Self Paced

Designing Nanoparticles for Targeted Cancer Therapy

Engineering Tiny Solutions for Big Impacts in Cancer Treatment

star_full star_full star_full star_full star_full

Enroll now for early access of e-LMS

MODE
Online/ e-LMS
TYPE
Self Paced
LEVEL
Moderate
DURATION
1 Month

About

The program on Designing Nanoparticles for Targeted Cancer Therapy is a comprehensive program aimed at providing researchers, scientists, and healthcare professionals with in-depth knowledge and practical skills in the field of nanoparticle-based cancer therapy. This program will explore the latest advancements, strategies, and challenges associated with designing nanoparticles for targeted drug delivery to cancer cells.

Aim

The aim of the program “Designing Nanoparticles for Targeted Cancer Therapy” is to provide participants with a comprehensive understanding of the principles, techniques, and advancements in designing nanoparticles specifically tailored for targeted cancer therapy.

Program Objectives

  • Explore Nanoparticle Design and Engineering
  • Examine Drug Loading and Release Mechanisms
  • Characterize Nanoparticle Properties
  • Improve the Pharmacokinetics
  • Reduce the Systemic Toxicities of Chemotherapies

Program Structure

Module 1: Principles and Designing of Targeted drug-delivery systems (TDDS) for Cancer Therapy
● Overview of nanoparticles and their applications in cancer treatment
● Role of targeted therapy in cancer treatment
● Principles of TDDS design for targeted drug delivery
● Rationale behind design and application of TDDS
● Selection of suitable materials for TDDS
● Surface modifications and functionalization for target-specific interactions

Module 2: Physicochemical characterization, Biocompatibility and Applications of TDDS for Cancer Therapy

● Physicochemical characterization of TDDS
● Efficient drug loading, drug encapsulation and controlled release
● Stability and self-life of drug molecules
● In vitro and in vivo toxicity evaluation of TDDS and drug molecules, undesirable side effects
● Release kinetics and ADME
● Animal model and clinical studies

Module 3: TDDS in the Market, Various Stages of Clinical Translation and Regulatory Aspects

● FDA and the EMA approved TDDS for cancer therapy
● Mechanism of Actions
● Case Studies
● Challenges for TTDS
● Regulatory Pathways

Participant’s Eligibility

  • Undergraduate degree in Chemistry, Biology, Pharmacy, or related fields.
  • Professionals in pharmaceuticals, biotechnology, or healthcare sectors.
  • Individuals with a background in materials science or medicinal chemistry interested in oncology.

Important Dates

Registration Ends

2023-08-09
Indian Standard Timing 02:00 PM

Program Dates

2023-08-09 to 2023-08-11
Indian Standard Timing 03:00 PM

Program Outcomes

  • Enhanced understanding of cancer biology, including the hallmarks of cancer and oncogenic signaling pathways.
  • Familiarity with different cancer treatment modalities, such as chemotherapy, radiation therapy, immunotherapy, and targeted therapy.
  • Knowledge of the applications of nanotechnology in cancer therapy, particularly the advantages of nanoparticles in drug delivery, imaging, and theranostics.
  • Awareness of drug resistance mechanisms in cancer and exploration of strategies to overcome or mitigate resistance through nanoparticle-based therapies.
  • Understanding of tumor targeting strategies, including active targeting using ligands or antibodies, passive targeting via the enhanced permeability and retention (EPR) effect, and physicochemical targeting based on tumor-specific characteristics.


Fee Structure

Standard Fee:           INR 4,998           USD 110

Discounted Fee:       INR 2499             USD 55

Batches

Spring
Summer

Live

Autumn
Winter

FOR QUERIES, FEEDBACK OR ASSISTANCE

Contact Learner Support

Best of support with us

Phone (For Voice Call)


WhatsApp (For Call & Chat)

Certificate

Program Assessment

Certification to this program will be based on the evaluation of following assignment (s)/ examinations:

Exam Weightage
Mid Term Assignments 20 %
Final Online Exam 30 %
Project Report Submission (Includes Mandatory Paper Publication) 50 %

To study the printed/online course material, submit and clear, the mid term assignments, project work/research study (in completion of project work/research study, a final report must be submitted) and the online examination, you are allotted a 1-month period. You will be awarded a certificate, only after successful completion/ and clearance of all the aforesaid assignment(s) and examinations.

Program Deliverables

  • Access to e-LMS
  • Real Time Project for Dissertation
  • Project Guidance
  • Paper Publication Opportunity
  • Self Assessment
  • Final Examination
  • e-Certification
  • e-Marksheet

Future Career Prospects

  • Nanomedicine Scientist
  • Oncological Researcher
  • Pharmaceutical Developer
  • Biotechnological Innovator
  • Clinical Trials Specialist
  • Healthcare Technology Consultant

Enter the Hall of Fame!

Take your research to the next level!

Publication Opportunity
Potentially earn a place in our coveted Hall of Fame.

Centre of Excellence
Join the esteemed Centre of Excellence.

Networking and Learning
Network with industry leaders, access ongoing learning opportunities.

Hall of Fame
Get your groundbreaking work considered for publication in a prestigious Open Access Journal (worth ₹20,000/USD 1,000).

Achieve excellence and solidify your reputation among the elite!


×

Related Courses

program_img

Antiviral Drug Development:

star_full star_full star_full star_full star_full

program_img

Transcriptomics: RNA to Single

star_full star_full star_full star_full star_full

program_img

Molecular Advances in Cancer

star_full star_full star_full star_full star_full

program_img

Neuroscience: Fundamental

star_full star_full star_full star_full star_full

Still have any Query?