Biopolymer-Based Hydrogels for Drug Delivery and Tissue Engineering
Design Smart Hydrogels for Precision Drug Delivery and Regenerative Therapies
About This Course
Hydrogels derived from natural biopolymers such as alginate, chitosan, gelatin, collagen, hyaluronic acid, and cellulose derivatives have gained significant attention due to their biocompatibility, tunable properties, and ability to mimic the extracellular matrix. These materials are widely explored for applications including drug delivery, wound healing, regenerative medicine, and 3D cell culture. However, designing hydrogels with precise mechanical strength, degradation behavior, and release profiles requires a deep understanding of polymer chemistry and structure–property relationships.
This workshop introduces participants to the formulation, characterization, and biomedical performance evaluation of biopolymer-based hydrogels. Topics include physical and chemical crosslinking methods, stimuli-responsive hydrogels, drug loading and release mechanisms, and scaffold design for tissue regeneration. Participants will explore how hydrogel properties are optimized for specific biomedical applications, with emphasis on translational considerations such as sterilization, scalability, and regulatory alignment.
Aim
This workshop aims to provide participants with a comprehensive understanding of biopolymer-based hydrogel systems for advanced biomedical applications. It focuses on the design, formulation, and functionalization of hydrogels for controlled drug delivery and tissue engineering. Participants will learn how biopolymer chemistry, crosslinking strategies, and network architecture influence mechanical properties, release kinetics, and biological response. The program bridges material design with translational biomedical applications.
Workshop Objectives
- Understand the fundamentals of biopolymer-based hydrogel systems.
- Learn crosslinking strategies and network design for targeted applications.
- Analyze drug loading, release kinetics, and diffusion mechanisms.
- Evaluate hydrogel properties relevant to tissue engineering scaffolds.
- Apply design principles for safe, scalable, and translational hydrogel products.
Workshop Structure
Day 1: Hydrogel Fundamentals & Material Selection
- What is a hydrogel, Key biopolymers: alginate, chitosan, gelatin, hyaluronic acid, collagen, cellulose derivatives, dextran, silk fibroin
- Crosslinking basics: ionic, chemical, enzymatic, photo-crosslinking (GelMA idea)
- Choosing a hydrogel for the job: injectable vs implantable, soft vs strong, fast vs slow release
- Core properties: swelling, porosity, mechanical strength, biodegradation, biocompatibility
- Hands-on: formulation worksheet crosslinking selection flowchart
Mini task: pick one application (wound / bone / cartilage / tumor) and select polymer + crosslinking method with justification.
Day 2: Fabrication & Drug Loading & Release
- Making hydrogels: bulk gels, injectable gels, microgels, beads, cryogels
- Drug loading strategies: physical entrapment, adsorption, covalent linkage, nanoparticle-in-hydrogel
- Release mechanisms: diffusion, swelling-controlled, degradation-controlled, stimuli-responsive (pH/temp/enzyme)
- Quick characterization: gelation time, swelling %, rheology basics, stability
- Release study design: sink conditions, sampling, plotting, interpreting release curves
Hands-on: Excel release-curve template; optional ImageJ for pore/structure images
Mini task: design a release experiment plan + generate a simple expected release profile for a model drug.
Day 3: Tissue Engineering Integration & Testing, Scale-Up & Reporting
- Tissue engineering requirements: cell compatibility, ECM mimicry, stiffness matching, nutrient diffusion
- Biofunctionalization: RGD/peptides, growth factors, heparin binding, antibacterial additives
- Scaffold strategies: composite hydrogels (nanocellulose/HA/clays), layered systems, 3D bioprinting overview
- Biological evaluation (overview): cytotoxicity, cell adhesion/viability, inflammation markers
- Translation essentials: sterilization, storage, batch consistency, basic regulatory thinking
- Research-grade reporting: what to include in a publishable/industry report (figures, tables, limitations, reproducibility)
- Hands-on: 1-page report template + checklist for “minimum publishable hydrogel data”
- Mini task: create a 1-page hydrogel design dossier (formulation → method → properties → release → intended application → improvement plan).
Who Should Enrol?
- Doctoral Scholars & Researchers: PhD candidates seeking to integrate computational workflows into their molecular research.
- Postdoctoral Fellows: Early-career scientists aiming to enhance their data-driven publication profile.
- University Faculty: Professors and HODs interested in modern bioinformatics pedagogy and tool mastery.
- Industry Scientists: R&D professionals from the Biotechnology and Pharmaceutical sectors transitioning to genomic-driven discovery.
- Postgraduate Students: Final-year PG students looking for specialized research-grade exposure beyond standard curricula.
Important Dates
Registration Ends
02/05/2026
IST 07:00 PM
Workshop Dates
02/05/2026 – 02/07/2026
IST 08:00 PM
Workshop Outcomes
Participants will be able to:
- Design and tailor biopolymer hydrogel formulations for biomedical use.
- Select appropriate crosslinking and gelation strategies.
- Understand and predict drug release and degradation behavior.
- Match hydrogel properties to tissue engineering requirements.
- Evaluate translational and regulatory considerations for hydrogel-based products.
Fee Structure
Student Fee
₹1799 | $70
Ph.D. Scholar / Researcher Fee
₹2799 | $80
Academician / Faculty Fee
₹3799 | $95
Industry Professional Fee
₹4799 | $110
What You’ll Gain
- Live & recorded sessions
- e-Certificate upon completion
- Post-workshop query support
- Hands-on learning experience
Join Our Hall of Fame!
Take your research to the next level with NanoSchool.
Publication Opportunity
Get published in a prestigious open-access journal.
Centre of Excellence
Become part of an elite research community.
Networking & Learning
Connect with global researchers and mentors.
Global Recognition
Worth ₹20,000 / $1,000 in academic value.
View All Feedbacks →
