Rated Excellent

250+ Courses

30,000+ Learners

95+ Countries

USD $0.00
Cart

No products in the cart.

NumPy – Use in AI Course

USD $59.00 USD $249.00Price range: USD $59.00 through USD $249.00

Course Overview

NumPy – Use in AI is an 8-week intensive course designed for M.Tech, M.Sc, and MCA students, as well as E0 & E1 level professionals. This course introduces participants to the powerful NumPy library, covering essential techniques for efficient numerical computations in AI. It emphasizes operations on large arrays and matrices, which are crucial for machine learning and data analysis tasks.

Add to Wishlist
Add to Wishlist

NumPy – Use in AI

Aim

This course builds strong NumPy fundamentals for AI and data workflows. Participants learn how to create, manipulate, and compute with arrays efficiently—covering vectorization, broadcasting, indexing, and basic linear algebra used in machine learning pipelines.

Who This Course Is For

  • Beginners starting AI/ML and data science
  • Students (UG/PG) learning Python for technical computing
  • Researchers and professionals who work with numerical data
  • Anyone planning to use Pandas, scikit-learn, or deep learning libraries

Prerequisites

  • Basic Python syntax (variables, loops, functions)
  • Basic math is enough (matrices are introduced from scratch)
  • No prior ML experience required

What You’ll Learn

  • Arrays: creating arrays, shapes, dtype, and memory basics
  • Indexing and slicing: 1D/2D/3D operations
  • Vectorization: replacing loops with fast array operations
  • Broadcasting: rules and practical use in ML features
  • Universal functions (ufuncs): math, comparisons, masking
  • Reshaping: reshape, transpose, stack, concatenate
  • Statistics: mean/median/std, normalization, and scaling concepts
  • Linear algebra: dot product, matrix multiplication, solving basics
  • Random module: sampling, shuffling, train-test split preparation
  • Working with files: loadtxt, genfromtxt, save, npz

Program Structure

Module 1: NumPy Basics for AI

  • Why NumPy is the base layer of ML and data tools
  • Arrays vs Python lists: performance and use-cases
  • Shapes, types, and simple computations

Module 2: Indexing, Slicing, and Masking

  • Basic slicing and advanced indexing
  • Boolean masks for filtering datasets
  • Common pitfalls and best practices

Module 3: Vectorization and Broadcasting

  • Vectorized operations for feature engineering
  • Broadcasting rules with real examples
  • Speeding up computations for ML pipelines

Module 4: Reshaping and Data Preparation

  • Reshape and transpose for ML inputs
  • Stacking, concatenation, and splitting arrays
  • Handling missing values (basics)

Module 5: Stats and Normalization for ML

  • Descriptive statistics for datasets
  • Standardization and min-max scaling concepts
  • Outlier handling using masks (intro)

Module 6: Linear Algebra Essentials

  • Dot product and matrix multiplication
  • Norms and similarity basics (overview)
  • How these operations appear in ML models

Module 7: Randomness and ML Sampling

  • Random sampling and reproducibility
  • Shuffling and splitting datasets
  • Generating synthetic data for testing

Module 8: Mini-Tasks for AI Readiness

  • Prepare a dataset: clean, transform, normalize, and split
  • Build simple feature matrices using vectorization
  • Compute similarity and basic scoring using linear algebra

Tools & Workflow Covered

  • Python + Jupyter/Colab
  • NumPy core functions used in ML preprocessing
  • Basic best practices for clean and efficient array code

Outcomes

  • Write efficient NumPy code using vectorization and broadcasting
  • Prepare numerical datasets for ML workflows
  • Use NumPy linear algebra operations commonly used in AI
  • Build confidence for moving to Pandas, scikit-learn, and deep learning

Certificate Criteria (Optional)

  • Complete practice checkpoints
  • Submit one mini-task notebook (data prep + transformations)
Category

E-LMS, E-LMS+Video, E-LMS+Video+Live Lectures

Certification

  • Upon successful completion of the workshop, participants will be awarded a Certificate of Completion, validating their skills and knowledge in advanced AI ethics and regulatory frameworks. This certification can be added to your LinkedIn profile or shared with employers to demonstrate your commitment to ethical AI practices.

Achieve Excellence & Enter the Hall of Fame!

Elevate your research to the next level! Get your groundbreaking work considered for publication in  prestigious Open Access Journal (worth USD 1,000) and Opportunity to join esteemed Centre of Excellence. Network with industry leaders, access ongoing learning opportunities, and potentially earn a place in our coveted 

Hall of Fame.

Achieve excellence and solidify your reputation among the elite!

14 + years of experience

over 400000 customers

100% secure checkout

over 400000 customers

Well Researched Courses

verified sources