• Home
  • /
  • Shop
  • /
  • Generative Adversarial Networks (GANs) Course

Rated Excellent

250+ Courses

30,000+ Learners

95+ Countries

USD $0.00
Cart

No products in the cart.

Generative Adversarial Networks (GANs) Course

USD $59.00 USD $249.00Price range: USD $59.00 through USD $249.00

This program explores the theory and applications of GANs, focusing on their two-component structure (generator and discriminator). Participants will learn how GANs work, delve into advanced variants like DCGAN and CycleGAN, and implement practical projects using GANs for real-world problems such as image synthesis and data generation.

Add to Wishlist
Add to Wishlist

Aim

This course delves into the world of Generative Adversarial Networks (GANs), a groundbreaking technique in deep learning for generating new data samples. Participants will learn how GANs work, their architecture, and how to build, train, and apply GAN models for various real-world applications, such as image generation, style transfer, and data augmentation. By the end of the course, participants will have a deep understanding of GANs and be able to implement and customize them for their own projects.

Program Objectives

  • Understand the fundamentals of Generative Adversarial Networks (GANs) and their applications.
  • Learn about the architecture of GANs, including the generator and discriminator components.
  • Explore the concept of adversarial training and how it applies to GANs.
  • Gain hands-on experience in building and training GANs for tasks like image generation, style transfer, and super-resolution.
  • Understand evaluation metrics and techniques for evaluating GAN model performance.
  • Explore advanced GAN architectures such as DCGANs, CycleGANs, and WGANs.

Program Structure

Module 1: Introduction to GANs

  • Overview of Generative Models and how GANs fit into the landscape of machine learning.
  • The concept of adversarial training and how it enables GANs to generate realistic data samples.
  • Understanding the generator and discriminator roles and their interaction in the GAN setup.

Module 2: GAN Architecture and Components

  • Deep dive into the architecture of GANs: The structure of the generator and discriminator networks.
  • The optimization process: How the generator and discriminator compete and improve over time.
  • Understanding the loss functions used to train GANs, including binary cross-entropy and minimax loss.

Module 3: Training GANs

  • How to train GANs: Practical aspects of data preparation, model design, and training procedures.
  • Challenges in training GANs: mode collapse, non-convergence, and solutions to stabilize training.
  • Best practices in GAN training, including the use of batch normalization and learning rate scheduling.

Module 4: Applications of GANs

  • Image generation using GANs: How to create realistic images from random noise.
  • Style transfer and super-resolution using GANs: Leveraging GANs for enhancing image quality and changing the style of images.
  • Exploring data augmentation and semi-supervised learning with GANs for enhancing dataset size and diversity.

Module 5: Advanced GAN Architectures

  • Introduction to DCGANs (Deep Convolutional GANs) and their application in generating high-quality images.
  • Understanding CycleGANs for image-to-image translation tasks, such as photo enhancement and style transfer.
  • Exploring WGANs (Wasserstein GANs) for improving stability and training of GANs, and their application in high-fidelity image generation.

Module 6: Evaluating GAN Models

  • Metrics for evaluating GAN performance: Inception score, Fréchet Inception Distance (FID), and human evaluation.
  • Understanding how to measure the quality and diversity of generated samples.
  • Advanced techniques for improving evaluation and visualizing GAN outputs.

Module 7: Hands-on Projects with GANs

  • Practical experience in implementing and training GANs using TensorFlow or PyTorch.
  • Projects focused on tasks like image generation, image-to-image translation, and style transfer.
  • End-to-end training pipeline: Preparing datasets, building models, training, and generating output.

Final Project

  • Design and implement a GAN for a specific task, such as generating art, enhancing images, or creating synthetic data for applications.
  • Present your project, detailing the architecture used, training process, challenges faced, and results achieved.
  • Example project: Building a GAN to generate high-resolution images or using CycleGAN for image style transfer.

Participant Eligibility

  • Students and professionals in Machine Learning, Data Science, Computer Vision, and Artificial Intelligence.
  • Individuals with a background in neural networks and deep learning looking to dive deeper into the world of Generative Adversarial Networks.
  • Anyone interested in understanding and applying GANs for creative and practical solutions in various industries.

Program Outcomes

  • In-depth understanding of Generative Adversarial Networks (GANs) and their applications.
  • Ability to implement, train, and evaluate GANs for tasks such as image generation, style transfer, and data augmentation.
  • Hands-on experience with TensorFlow and PyTorch for GAN development.
  • Understanding advanced GAN architectures like DCGANs, CycleGANs, and WGANs and their real-world applications.

Program Deliverables

  • Access to e-LMS: Full access to course materials, tutorials, and resources.
  • Hands-on Project Work: Practical assignments on implementing and training GANs for real-world applications.
  • Research Paper Publication: Opportunities to publish research findings on GANs and their applications in relevant journals.
  • Final Examination: Certification awarded after completing the exam and final project.
  • e-Certification and e-Marksheet: Digital credentials provided upon successful completion.

Future Career Prospects

  • Generative Model Researcher
  • AI and Deep Learning Engineer
  • Machine Learning Specialist (Computer Vision)
  • Data Scientist with expertise in GANs
  • Creative AI Specialist (art, music, design)

Job Opportunities

  • AI and Machine Learning Companies: Developing generative models for creative industries and practical applications.
  • Research Institutions: Investigating GAN architectures and developing new approaches for generative modeling.
  • Entertainment and Gaming Companies: Using GANs for generating realistic game environments, characters, and assets.
  • Healthcare and Biotech Firms: Leveraging GANs for generating synthetic medical data, enhancing medical imaging, and training diagnostic systems.
Category

E-LMS, E-LMS+Video, E-LMS+Video+Live Lectures

Reviews

There are no reviews yet.

Be the first to review “Generative Adversarial Networks (GANs) Course”

Your email address will not be published. Required fields are marked *

Certification

  • Upon successful completion of the workshop, participants will be awarded a Certificate of Completion, validating their skills and knowledge in advanced AI ethics and regulatory frameworks. This certification can be added to your LinkedIn profile or shared with employers to demonstrate your commitment to ethical AI practices.

Achieve Excellence & Enter the Hall of Fame!

Elevate your research to the next level! Get your groundbreaking work considered for publication in  prestigious Open Access Journal (worth USD 1,000) and Opportunity to join esteemed Centre of Excellence. Network with industry leaders, access ongoing learning opportunities, and potentially earn a place in our coveted 

Hall of Fame.

Achieve excellence and solidify your reputation among the elite!

14 + years of experience

over 400000 customers

100% secure checkout

over 400000 customers

Well Researched Courses

verified sources