• Home
  • /
  • Shop
  • /
  • Epigenetic Mechanisms in Gene Regulation Course

Rated Excellent

250+ Courses

30,000+ Learners

95+ Countries

USD $0.00
Cart

No products in the cart.

Epigenetic Mechanisms in Gene Regulation Course

USD $59.00 USD $249.00Price range: USD $59.00 through USD $249.00

This one-month program explores the mechanisms of epigenetics, including DNA methylation and histone modification, to understand gene regulation and its impact on health and disease. It equips participants with skills in modern techniques and fosters discussions on ethical implications.

Add to Wishlist
Add to Wishlist

Aim

This course explains how epigenetic mechanisms regulate gene expression without changing the DNA sequence. Participants will learn the major layers of epigenetic control—DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs—and how these processes shape development, cell identity, disease progression, and therapy response. The program includes case-based learning and a final mini-project to connect epigenetic theory to real biological questions.

Program Objectives

  • Understand Epigenetic Fundamentals: Learn what epigenetics is and how it differs from genetics.
  • Master Core Mechanisms: DNA methylation, histone marks, chromatin remodeling, and non-coding RNA regulation.
  • Link to Gene Expression: Understand how epigenetic marks influence transcription and cell identity.
  • Epigenetics in Disease: Explore cancer, metabolic disorders, neurobiology, and immune regulation examples.
  • Epigenetic Tools & Methods: Learn common lab and sequencing approaches at a conceptual + practical level.
  • Interpretation & Limits: Understand causation vs correlation, tissue specificity, and confounders.
  • Hands-on Outcome: Build an epigenetic regulation map or analysis plan as a final project.

Program Structure

Module 1: Epigenetics — The Language Above DNA

  • Genetics vs epigenetics: what changes and what stays constant.
  • Cell identity: how the same genome produces different cell types.
  • Epigenetic inheritance and stability: what is heritable vs reversible.
  • Key concept: chromatin as a dynamic regulator of transcription.

Module 2: Chromatin Architecture & Nucleosome Basics

  • DNA packaging: nucleosomes, histones, and chromatin states.
  • Euchromatin vs heterochromatin: accessibility and gene activity.
  • Enhancers, promoters, silencers: regulatory elements and accessibility.
  • 3D genome concept: looping and long-range regulation (overview).

Module 3: DNA Methylation and Gene Silencing

  • What DNA methylation is (CpG sites) and how it affects transcription.
  • DNMTs and demethylation concepts (writers/erasers).
  • Imprinting and X-chromosome inactivation (key examples).
  • Methylation changes in cancer and aging (overview).

Module 4: Histone Modifications — Writers, Readers, Erasers

  • Common histone marks: acetylation, methylation, phosphorylation (overview).
  • How histone acetylation opens chromatin and supports transcription.
  • Activating vs repressive marks and “histone code” thinking.
  • Epigenetic enzymes as drug targets (HDAC inhibitors, etc. overview).

Module 5: Chromatin Remodeling Complexes

  • What remodeling complexes do: sliding, ejecting, or restructuring nucleosomes.
  • SWI/SNF concept and cancer links (overview).
  • Accessibility and transcription factor binding: why remodeling is critical.
  • Interplay with histone marks and DNA methylation.

Module 6: Non-Coding RNAs in Epigenetic Regulation

  • miRNAs, lncRNAs, and their roles in gene regulation.
  • How lncRNAs guide chromatin modifiers to specific genomic regions (concept).
  • RNA-mediated silencing and chromatin state changes (overview).
  • Clinical relevance: non-coding RNAs as biomarkers (overview).

Module 7: Epigenetics in Development, Immunity & Disease

  • Developmental epigenetics: differentiation and lineage commitment.
  • Immune cell programming: activation, tolerance, and memory (overview).
  • Cancer epigenetics: tumor suppressor silencing, enhancer hijacking.
  • Neuroepigenetics and metabolic epigenetics: environment–gene regulation links.

Module 8: Epigenetic Tools & Methods (Concept + Workflow View)

  • Wet-lab methods overview: bisulfite conversion, ChIP concept, ATAC concept.
  • Sequencing outputs: methylation maps, histone mark peaks, accessibility profiles.
  • Experimental design basics: controls, replicates, tissue specificity.
  • How to interpret datasets responsibly: confounders and batch effects.

Module 9: Epigenetic Therapeutics & Future Directions

  • Why epigenetic changes are attractive therapeutic targets (reversible nature).
  • Epigenetic drugs overview: DNMT inhibitors, HDAC inhibitors, emerging targets.
  • Precision epigenome editing (overview): CRISPR-based epigenetic modulation concept.
  • Where the field is going: single-cell epigenomics and multi-omics integration (overview).

Final Project

  • Create an Epigenetic Regulation Map or Epigenetics Study Plan for a chosen gene/pathway.
  • Include: hypothesized regulatory marks, mechanism summary, experiment/analysis approach, and interpretation plan.
  • Example projects: methylation-mediated silencing of a tumor suppressor, histone mark changes during differentiation, epigenetic regulation of inflammatory genes, enhancer regulation in cancer.

Participant Eligibility

  • UG/PG/PhD students in Genetics, Biotechnology, Molecular Biology, Biochemistry, or related fields
  • Researchers working in gene regulation, cancer biology, developmental biology, or immunology
  • Professionals entering omics, epigenomics, or translational research
  • Basic knowledge of DNA, RNA, and gene expression is recommended

Program Outcomes

  • Mechanism Mastery: Understand the major epigenetic layers controlling gene expression.
  • Systems Thinking: Ability to connect chromatin state changes to phenotypes and disease outcomes.
  • Method Awareness: Understand common epigenetics experimental and sequencing workflows.
  • Interpretation Discipline: Know limitations, confounders, and how to avoid overclaiming.
  • Portfolio Deliverable: A gene/pathway-focused epigenetics map or plan you can showcase.

Program Deliverables

  • Access to e-LMS: Full access to course content and reference resources.
  • Learning Toolkit: Epigenetic mark cheat-sheet, mechanism mapping template, experiment planning worksheet.
  • Case-Based Exercises: Cancer, development, and immune regulation scenarios.
  • Project Guidance: Mentor support for building your final epigenetics map/study plan.
  • Final Assessment: Certification after assignments + capstone submission.
  • e-Certification and e-Marksheet: Digital credentials provided upon successful completion.

Future Career Prospects

  • Epigenetics Research Intern / Associate
  • Omics Research Assistant (Epigenomics / Transcriptomics track)
  • Genomics & Bioinformatics Support Associate
  • Translational Research Associate (Gene Regulation)
  • Scientific Content / Education Specialist (Molecular Biology)

Job Opportunities

  • Academic & Research Institutes: Epigenetics, cancer biology, developmental biology labs.
  • Biotech & Pharma: Epigenetic drug discovery and translational research teams.
  • Clinical Genomics & CROs: Omics analysis support and biomarker programs.
  • Healthtech & Genomics Startups: Multi-omics platforms, precision medicine analytics, biomarker discovery teams.
Category

E-LMS, E-LMS+Videos, E-LMS+Videos+Live

Reviews

There are no reviews yet.

Be the first to review “Epigenetic Mechanisms in Gene Regulation Course”

Your email address will not be published. Required fields are marked *

Certification

  • Upon successful completion of the workshop, participants will be awarded a Certificate of Completion, validating their skills and knowledge in advanced AI ethics and regulatory frameworks. This certification can be added to your LinkedIn profile or shared with employers to demonstrate your commitment to ethical AI practices.

Achieve Excellence & Enter the Hall of Fame!

Elevate your research to the next level! Get your groundbreaking work considered for publication in  prestigious Open Access Journal (worth USD 1,000) and Opportunity to join esteemed Centre of Excellence. Network with industry leaders, access ongoing learning opportunities, and potentially earn a place in our coveted 

Hall of Fame.

Achieve excellence and solidify your reputation among the elite!

14 + years of experience

over 400000 customers

100% secure checkout

over 400000 customers

Well Researched Courses

verified sources