Aim
This course explores how Artificial Intelligence is shaping modern telemedicine and digital health services. Participants learn how AI improves virtual consultations, remote patient monitoring, clinical documentation, triage support, and personalized care delivery. The program focuses on designing safe, scalable, and patient-centered telemedicine systems while ensuring privacy, ethics, and healthcare compliance.
Program Objectives
- Understand telemedicine workflows and digital healthcare delivery models.
- Learn how AI enhances virtual triage, symptom screening, and care prioritization.
- Explore remote patient monitoring using wearable and home health devices.
- Apply AI to clinical documentation and digital workflow automation.
- Design patient engagement and personalized digital health journeys.
- Understand privacy, security, bias, and regulatory requirements in telemedicine.
- Create a practical AI-enabled telemedicine solution plan.
Program Structure
Module 1: Foundations of Telemedicine and AI
- Overview of telemedicine services and digital care models.
- Understanding the role of AI in supporting remote healthcare delivery.
- Identifying safe and high-impact AI use cases in telemedicine.
Module 2: Digital Health Data and Remote Monitoring
- Types of telemedicine data including vitals, questionnaires, and wearable signals.
- Designing meaningful alerts and monitoring thresholds.
- Managing noisy and incomplete real-world health data.
Module 3: AI for Virtual Triage and Symptom Analysis
- Designing symptom screening workflows for virtual care.
- Rule-based versus AI-assisted triage approaches.
- Risk management using escalation rules and clinician oversight.
Module 4: Clinical Decision Support in Telemedicine
- Supporting follow-up planning, reminders, and chronic care check-ins.
- Understanding risk scoring and early warning indicators.
- Communicating AI suggestions responsibly to clinicians.
Module 5: AI-Assisted Clinical Documentation
- Automating visit summaries and follow-up instructions.
- Structuring clinical notes for clarity and audit readiness.
- Reducing administrative workload while maintaining accuracy.
Module 6: Patient Engagement and Personalized Digital Care
- Designing digital onboarding, reminders, and education workflows.
- Personalizing communication based on patient risk and behavior.
- Improving accessibility and trust in digital health interactions.
Module 7: Telemedicine Operations and Service Analytics
- Optimizing appointment scheduling and reducing wait times.
- Monitoring service quality and unresolved virtual visits.
- Using patient feedback and analytics for continuous improvement.
Module 8: Privacy, Ethics, and Compliance in Digital Health
- Protecting patient data through consent, access control, and secure storage.
- Addressing bias, fairness, and transparency in AI systems.
- Ensuring safe deployment and ongoing monitoring of AI tools.
Module 9: Designing an AI-Enabled Telemedicine Solution
- Building an end-to-end telemedicine workflow with AI support.
- Defining clinical safety, operational, and patient experience metrics.
- Planning deployment, monitoring, and system updates.
Final Project
- Design an AI-powered telemedicine solution for a chosen healthcare use case.
- Define patient journey, data requirements, risk controls, and evaluation metrics.
- Example projects include remote monitoring alert systems, virtual visit summarization workflows, or safe triage chatbot designs.
Participant Eligibility
- Healthcare professionals and clinical teams.
- Students and researchers in public health and biomedical sciences.
- Data analysts and AI practitioners interested in digital health.
- Telemedicine and health technology product teams.
Program Outcomes
- Ability to design AI-supported telemedicine workflows.
- Understanding of remote care analytics and digital health data.
- Knowledge of responsible AI and compliance requirements.
- Readiness to contribute to telemedicine and digital health initiatives.
Program Deliverables
- Access to e-LMS learning materials.
- Hands-on assignments focused on telemedicine use cases.
- Final project with structured evaluation.
- Final examination and certification.
- Digital certificate and marksheet.
Future Career Prospects
- Digital Health Analyst
- Telemedicine Operations Specialist
- Healthcare AI Product Associate
- Remote Patient Monitoring Analyst
- Clinical Informatics Associate
Job Opportunities
- Telemedicine platforms and virtual care providers
- Hospitals and clinics offering digital health services
- Healthcare technology startups
- Remote monitoring and wearable health companies
- Public health and community telecare programs








