• Home
  • /
  • Course
  • /
  • AI for Pest & Disease Detection: Build an Image Classifier

Rated Excellent

250+ Courses

30,000+ Learners

95+ Countries

USD $0.00
Cart

No products in the cart.

Sale!

AI for Pest & Disease Detection: Build an Image Classifier

Original price was: USD $99.00.Current price is: USD $59.00.

Hands-On Deep Learning for Crop Pest & Disease Detection

Add to Wishlist
Add to Wishlist
Category:

About This Course
AI for Pest & Disease Detection: Build an Image Classifier is a fully hands-on, project-based course where participants learn how to turn simple leaf photos into an AI-powered decision-support tool for farmers. Using Google Colab, Python, and transfer learning (MobileNet/ResNet), you will work step-by-step with real plant health images to build, train, and test an image classifier that can flag likely diseases/pests and generate simple advisory messages.

Aim
This hands-on course equips participants with practical skills to build, evaluate, and responsibly use an AI-based image classifier for crop pest and disease detection—starting from raw leaf images and ending with a simple “farmer-facing” decision-support flow.

Course Objectives

  • Introduce fundamentals of AI-based pest and disease detection using leaf images

  • Enable dataset exploration, organisation, and quality assessment in Google Colab

  • Guide learners to build a transfer learning–based classifier for crop pest/disease classes

  • Interpret predictions (class + confidence) and map them to advisory messages for farmers

  • Understand risks, limitations, and bias of image-only diagnosis + need for expert validation

  • Design a practical deployment flow (app/WhatsApp bot + agronomist) for real extension use


Course Structure

✅ Module 1 – Data & Image Classification Basics (Hands-on)

  • Problem framing: farmer takes a picture → app gives “likely disease + advice”

  • Hands-on: mount Google Drive in Colab, list images, visualise samples (matplotlib)

  • Image quality discussion: lighting, angle, blur/noise and effect on performance

  • Mini dataset tour: folder structure (healthy/, diseased/ or 3–4 classes)

  • Quick reflection: limitations of AI purely from images
    👉 Outcome: Colab Notebook 01_pest_image_dataset_exploration.ipynb + labelled training image folder ready for modelling


✅ Module 2 – Build & Train a Simple Classifier (Transfer Learning Lab)

  • Concept: transfer learning and why it works well for small datasets

  • Hands-on: load pre-trained MobileNet/ResNet, freeze base layers

  • Build model head: add classification layers for pest/disease classes

  • Training lab: train for a few epochs + view accuracy/loss curves

  • Quick test: upload a new leaf image and check predicted class
    👉 Outcome: Colab Notebook 02_pest_classifier_training.ipynb + first working “AI diagnosis” classifier (baseline model)


✅ Module 3 – Responsible Use & Deployment Ideas (Design + Reporting)

  • Discussion: error, bias & impact (misclassification → wrong spraying advice and risk)

  • Hands-on: generate prediction report (class, confidence, advisory template message)

  • Design exercise: sketch an app/WhatsApp bot flow using the trained model

  • Human-in-the-loop: add agronomist/extension validation step into workflow

  • Extension ideas: more classes, multilingual advisory, helpline integration
    👉 Outcome: Colab Notebook 03_pest_classifier_reporting_and_flow.ipynb + deployment flow diagram for documentation


Who Should Enrol?

  • UG/PG students in Agriculture, Agricultural Engineering, Plant Pathology, Biotechnology, Data Science, etc.

  • Researchers & faculty applying AI/ML/computer vision to crop health

  • Professionals from agri-input firms, agri-tech startups, FPOs, NGOs, extension services

  • AI/ML learners who want a practical agriculture-focused image classification project

Preferred background (not mandatory):
Basic programming familiarity (Python is a plus) + comfort using Google Colab

Reviews

There are no reviews yet.

Be the first to review “AI for Pest & Disease Detection: Build an Image Classifier”

Your email address will not be published. Required fields are marked *

Certification

  • Upon successful completion of the workshop, participants will be awarded a Certificate of Completion, validating their skills and knowledge in advanced AI ethics and regulatory frameworks. This certification can be added to your LinkedIn profile or shared with employers to demonstrate your commitment to ethical AI practices.

Achieve Excellence & Enter the Hall of Fame!

Elevate your research to the next level! Get your groundbreaking work considered for publication in  prestigious Open Access Journal (worth USD 1,000) and Opportunity to join esteemed Centre of Excellence. Network with industry leaders, access ongoing learning opportunities, and potentially earn a place in our coveted 

Hall of Fame.

Achieve excellence and solidify your reputation among the elite!

14 + years of experience

over 400000 customers

100% secure checkout

over 400000 customers

Well Researched Courses

verified sources