• Home
  • /
  • Course
  • /
  • ML Models for Air Quality Prediction and Health Impact

Rated Excellent

250+ Courses

30,000+ Learners

95+ Countries

USD $0.00
Cart

No products in the cart.

Sale!

ML Models for Air Quality Prediction and Health Impact

Original price was: USD $99.00.Current price is: USD $59.00.

Forecasting Air Pollution and Assessing Its Health Consequences Using Machine Learning

Add to Wishlist
Add to Wishlist

About This Course

Air pollution isn’t just an environmental issue—it’s a daily public-health risk. Cities need faster ways to predict when air quality will worsen and understand who will be impacted most, so responses can be planned early (alerts, traffic controls, hospital readiness, school advisories, etc.).

This 3-week course walks you through the end-to-end pipeline: sourcing real air-quality data, building and validating forecasting models, and then converting those predictions into health-impact indicators such as exposure risk and vulnerability insights. You’ll work with real-world datasets from sources like OpenAQ, EPA, CPCB, WHO, and Sentinel-5P, and learn how to communicate outputs through dashboards and visual tools.


Aim

To train participants to design and apply machine learning models for air quality prediction and health impact estimation, supporting policy, urban planning, and early intervention strategies.


Course Objectives

By the end of this course, participants will be able to:

  • Use ML forecasting to support data-driven air quality management

  • Turn model predictions into actionable public-health insights

  • Work confidently across environment + health datasets (interdisciplinary approach)

  • Build awareness tools using predictive intelligence and visual storytelling

  • Integrate real-time sensing data with analytics pipelines for monitoring and alerts


Course Structure

Module 1: Foundations of Air Quality and Data Acquisition

  • Understanding the core pollutants and indices:

    • AQI, PM2.5, PM10, NO₂, O₃ and what they mean in daily life

  • Health guidelines and why thresholds matter (short-term vs long-term exposure)

  • Where your data comes from (and what each source is good for):

    • OpenAQ, EPA, CPCB, WHO, Sentinel-5P

  • Exploratory analysis:

    • spotting seasonal patterns, spikes, missing values, and spatial–temporal trends


Module 2: Machine Learning for Air Quality Forecasting

  • Forecasting methods you can actually deploy:

    • Linear Regression, ARIMA, XGBoost, LSTM

  • Feature engineering that improves predictions:

    • lag features, rolling stats, weather co-variables (where available), location signals

  • Model evaluation (so you trust your results):

    • RMSE, MAE, R², and classification-style checks when relevant (Confusion Matrix)

  • Tools covered:

    • Python, Scikit-learn, Prophet, TensorFlow


Module 3: Health Impact Estimation and Deployment

  • Turning pollution forecasts into health signals:

    • estimating short-term vs long-term risk

  • Exposure mapping:

    • who is exposed, where the hotspots are, and how vulnerability changes by region

  • Linking ML outputs to public-health metrics:

    • practical framing for DALY, mortality risk (concept + application approach)

  • Communicating outcomes clearly:

    • dashboards and reporting using Streamlit, Power BI, Dash


Who Should Enrol?

  • Environmental engineers, sustainability teams, and urban data analysts

  • Health data scientists, epidemiologists, and public-health researchers

  • AI/ML professionals working in climate, environment, or smart cities

  • Government air-quality officers and public-health planners

  • Graduate students and researchers in environmental health or data science

Reviews

There are no reviews yet.

Be the first to review “ML Models for Air Quality Prediction and Health Impact”

Your email address will not be published. Required fields are marked *

Certification

  • Upon successful completion of the workshop, participants will be awarded a Certificate of Completion, validating their skills and knowledge in advanced AI ethics and regulatory frameworks. This certification can be added to your LinkedIn profile or shared with employers to demonstrate your commitment to ethical AI practices.

Achieve Excellence & Enter the Hall of Fame!

Elevate your research to the next level! Get your groundbreaking work considered for publication in  prestigious Open Access Journal (worth USD 1,000) and Opportunity to join esteemed Centre of Excellence. Network with industry leaders, access ongoing learning opportunities, and potentially earn a place in our coveted 

Hall of Fame.

Achieve excellence and solidify your reputation among the elite!

14 + years of experience

over 400000 customers

100% secure checkout

over 400000 customers

Well Researched Courses

verified sources