Self Paced

Neuroscience: Fundamental Principles to Computational Synapses

Unraveling the Brain’s Code: From Neural Circuits to Computational Models.

Register NowExplore Details

Early access to the e-LMS platform is included

  • Mode: Online/ e-LMS
  • Type: Self Paced
  • Level: Moderate
  • Duration: 1 Month

About This Course

This intensive one-month program delves into the core principles of neuroscience, from the basic anatomical and functional organization of the nervous system to advanced computational models of synapses. Participants will engage with topics such as neural signal processing, synaptic transmission, and neural network modeling, using both theoretical frameworks and hands-on computational tools. The course is designed not only to provide foundational knowledge but also to stimulate innovative thinking and practical applications in computational neuroscience, preparing participants for advanced research or careers in this dynamic field.

Aim

To explore the intersection of neuroscience and computational technology, providing a comprehensive foundation in how neural mechanisms underpin behavior and cognitive processes and their computational modeling. The program aims to equip participants with both theoretical knowledge and practical skills to innovate in the field of computational neuroscience.

Program Objectives

  • A strong foundation in both theoretical and empirical aspects of neuroscience.
  • Advanced knowledge in computational methods used to model and analyze neural systems.
  • The ability to apply computational skills to solve problems in neuroscience research.

Program Structure

Week 1: Introduction to Neuroscience

  • Structure and function of neurons, including basic neurochemistry.
  • How neurons communicate through synapses, including neurotransmitters and synaptic plasticity.
  • Overview of the central nervous system and peripheral nervous system.
  • Introduction to MRI, fMRI, and PET scans.

Week 2: Electrical Properties of Neurons

  • Understanding the ionic basis of action potentials.
  • How action potentials are propagated along neurons.
  • A quantitative description of the ionic basis of the action potential.
  • Simulating neuronal behavior (Software: NEURON).

Week 3: Advanced Topics in Synaptic Transmission

  • Mechanisms of short-term and long-term potentiation.
  • Roles of different neurotransmitters and their links to neurological disorders.
  • Understanding deep brain stimulation and transcranial magnetic stimulation.
  • Modeling synapses using computational tools (Software: GENESIS).  

Week 4: Integrative Neuroscience

  • How individual neurons form complex networks.
  • Basics of neural networks in the brain and in artificial intelligence.
  • Introduction to technologies that integrate neural networks with computer systems.
  • Discussion of case studies using MATLAB for analyzing neural data.

Who Should Enrol?

  • Undergraduate or graduate students in Neuroscience, Biology, Psychology, or Computer Science.
  • Professionals working in biotechnology, pharmaceutical industries, or academic research who wish to integrate computational methods into their neuroscience projects.
  • Enthusiasts with a strong background in mathematics or programming interested in exploring brain function.

Program Outcomes

  • Understand the fundamental principles of neural behavior and signal transduction.
  • Gain proficiency in computational modeling techniques for synapses and neural networks.
  • Develop the ability to apply machine learning techniques to neuroscience data analysis.
  • Enhance skills in interpreting complex biological data through computational simulations.
  • Prepare for advanced research or professional roles in computational neuroscience.

Fee Structure

Standard: ₹8,998 | $198

Discounted: ₹4499 | $99

We accept 20+ global currencies. View list →

What You’ll Gain

  • Full access to e-LMS
  • Real-world dry lab projects
  • One-on-one project guidance
  • Publication opportunity
  • Self-assessment & final exam
  • e-Certificate & e-Marksheet

Join Our Hall of Fame!

Take your research to the next level with NanoSchool.

Publication Opportunity

Get published in a prestigious open-access journal.

Centre of Excellence

Become part of an elite research community.

Networking & Learning

Connect with global researchers and mentors.

Global Recognition

Worth ₹20,000 / $1,000 in academic value.

Need Help?

We’re here for you!


(+91) 120-4781-217

★★★★★
Prediction of Protein Structure Using AlphaFold: An Artificial Intelligence (AI) Program

nice work

Diego Ordoñez
★★★★★
Forecasting patient survival in cases of heart failure and determining the key risk factors using Machine Learning (ML), Predictive Modelling of Heart Failure Risk and Survival

The mentor was very knowledgeable and conveyed complex concepts in a clear and structured way.

Eleonora Lombardi
★★★★★
Generative AI and GANs

Good workshop

Noelia Campillo Tamarit
★★★★★
AI-Assisted Composite Materials Design

Excellent Presentation and Guidance in AI assisted design of composite materials by the mentor.

RAJKUMAR GUNTI rajkumar.gunti@gmail.com

View All Feedbacks →

Stay Updated


Join our mailing list for exclusive offers and course announcements

Ai Subscriber