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Abstract: This review provides a detailed analysis of the use of virtual library screening (VLS) in the drug
discovery process. The first part is intended as a larger overview of the integrated VLS process. Small molecule
and target macromolecule considerations will be described separately and will be subsequently integrated in a
discussion of docking, scoring and evaluation. The second half of the review will focus on recent case studies
that use VLS as part of an integrated drug discovery program. The case studies will illustrate the range of
possible targets in VLS, provide an account of inclusive methodology and reveal the expectations for realistic
goals. Recent efforts provide compelling evidence that VLS is successful when practiced in an integrated
fashion involving synthetic, structural and computational expertise.
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INTRODUCTION

It is widely appreciated that advances in the biological
component of drug development have catalyzed a shift in the
strategies and tactics that underlie the drug discovery
process. New information has evolved to describe disease
states at the molecular rather than organismic level, which in
turn presents those involved in drug development with a
large array of well-defined targets. Additionally, economic
factors are driving the need for a shorter lead-to-drug
development time.

A number of methodologies have evolved to integrate the
higher degree of molecular information, number of new
targets and need for efficiency. This integration has been
most widely implemented in the coupling of high-
throughput screening (HTS) with high-output chemical
synthesis [1-3]. HTS relies on the development of efficient
and reliable assays to permit the evaluation of a large
number of compounds against a target in a rapid and often
automated manner. The large volume of HTS data is
modeled in order to assess structure-activity relationships,
but problems arise when these models suffer from distortion
by false positives. Combinatorial chemistry, the synthesis of
a very large number of compounds using a single scaffold
and a diverse array of reactants, has also attempted to address
the need for a large number of new drug leads [4-6]. This
methodology is severely limited by the labor-intensive and
costly efforts required to prepare and purify such large
numbers of compounds.

Virtual screening, using a computational approach to
assess the interaction of an in silico library of small
molecules and the structure of a target macromolecule, has
arisen as an alternative method for the rapid identification of
new drug leads. A great deal of effort has been extended to
create reliable and efficient software that evaluates the highly
complex nature, both enthalpic and entropic, of the
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interaction between small molecules and their
macromolecular receptors. A typical virtual library screening
(VLS) approach involves several stages, Fig. (1), including
parallel efforts that involve small molecule and
macromolecule preparation.

Various stages of the VLS methodology described in
Figure 1 have been previously reviewed [7-11] and provide
an excellent resource for detailed analyses of many of the
components of this process. The first part of this review is
intended as a larger overview of the integrated VLS process.
Small molecule and target macromolecule considerations
will be described separately and will be subsequently
integrated in a discussion of docking, scoring and
evaluation. The second half of the review will focus on
recent case studies that use VLS as part of an integrated drug
discovery program. The case studies will illustrate the range
of possible targets in VLS, provide an account of inclusive
methodology and reveal the expectations for realistic goals.

SMALL MOLECULE VIRTUAL LIBRARIES

Sources of New Chemical Entities

At the present time, the overwhelming majority of
clinically used drugs are small, organic-based molecules that
represent an amazing array of structural diversity [12, 13].
Although macromolecular agents such as proteins and
nucleic acids are entering the clinical arena [14], small
molecules are certain to play a major role in therapeutic
development for decades to come. New chemical entities
represent one of the key pillars of the modern drug discovery
effort. It is critical that the identification of a biological
target (usually protein) that mediates a disease state is
followed by the identification of a small-molecule effector
(ligand) that can interact with and alter the biological
function of the target. In the past, these ligands have been
identified through a screening process that involves the
establishment of a reliable biological assay followed by
testing of collections of compounds, usually proprietary
legacy collections that have been established in-house by
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Fig. (1). A typical VLS scheme. Stages include both small molecule library preparation (choice of library, considerations for filtering)
and target preparation (choice of structure of target and identification of binding site). In VLS, the library is docked into the target,
scored and evaluated. Any possible leads are optimized in later stages.

large pharmaceutical companies. The assembly of these
compound collections has been a highly variable and often
random process that involved natural product isolates,
synthetic intermediates and purchased samples from
academic labs. Often, these compounds were byproducts of
other medicinal chemistry efforts and may account for some
of the redundancy in medicinal structural types. Despite the
lack of an overriding rationale for the assembly of these
collections, these screening libraries have produced many
initial “hits” against the biological system of interest and
have led to the development of new therapeutic agents. New
strategies and tactics such as parallel synthesis and solid-
phase organic synthesis have appeared in synthetic chemistry
to assemble large groups of novel compounds for biological
evaluation.

Synthetic Challenge in Library Synthesis

From the perspective of the synthetic chemist, the post-
genomic age represents a wealth of new opportunities

coupled with new challenges that are pushing the limits of
contemporary synthetic methodology. Since the 1950s,
synthetic chemistry has primarily been practiced as target-
oriented synthesis (TOS) whereby single compounds were
slated for preparation [15]. The translation of the designed
route to practice is almost always complicated by difficulties
with certain synthetic steps. These difficulties are often
attributed to an imperfect understanding of reactivity and
selectivity of complex molecules. Frequently, these
problematic steps can be circumvented by careful reaction
optimization or tactical modification of the first-generation
route that can make synthesis a costly and time-consuming
practice.

In order to satisfy the demand for novel compounds, a
new strategy of diversity-oriented synthesis (DOS) has
emerged [16, 17] to complement the older TOS strategy. In
DOS, the synthetic chemistry is geared towards the
preparation of large arrays of compounds that sample a vast
swath of chemical space. In addition to changes in strategy,
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changes in the practice of synthetic chemistry such as
parallel synthesis [18] (manual or automated) have made it
possible to prepare thousands of compounds in much shorter
periods of time. However, these high speed methods of
synthesis do not guarantee that each individual member of
the library will actually be made or even ensure that the
quality of the materials produced will be sufficient for
biological assay. Another major limitation in parallel
synthesis is the extreme cost associated with the preparation
and purification of such a large number of chemical entities.

Again from the perspective of the synthetic chemist, the
challenge of preparing these large arrays becomes daunting.
It has been a commonly held belief that the larger a library
is, the better the chance of locating a hit against a novel
biological target. However, as the size of the library
increases, the cost and difficulty of synthesis necessarily
increases. Often, the types of compounds slated for library
synthesis are given a high priority based on ease of
preparation, not diversity or druggability considerations. The
high cost of each additional step in a sequence frequently
biases the synthetic chemist towards reactions with high
step-economy whereby a single reaction leads to a large
increase in molecular complexity [19]. Multi-component
reactions, such as the Ugi, Biginelli or Hantzch
condensations [20] and “click” reactions [21] are prized in
library production because of their very high step-economy.
These compounds tend to be overrepresented in libraries due
solely to their ease of preparation.

Virtual Screening and the Synthetic Challenge

The application of virtual screening protocols to lead
identification offers an opportunity to drastically reduce the
time and cost associated with the production of libraries for
screening. It is intuitive that the production of a library in
silico is a significantly simpler exercise than the chemical
synthesis of the same library. This is arguably the greatest
impact virtual screening will have on the drug discovery
process. If a reliable and efficient computational protocol can
be established to rank each member of a library as to its
ability to interact in a productive manner with a
macromolecular receptor, then it becomes unnecessary to
prepare, through synthesis, each member of the library. A
much smaller group of target compounds can be slated for
production. This drastic reduction in the demand placed on
the synthetic component of the discovery team allows for a
greater effort to be placed in a more directed TOS-like
activity that can take advantage of more reliable methods of
chemical synthesis.

The ideal screening library would contain every
conceivable molecule that had good drug-like properties with
the notion that a ligand could then be found for every
receptor in the genome. However, in reality, even the most
extensive screening library will contain only a very small
fraction of all chemical space. Approximations of the total
number of unique chemical entities have ranged as high as
10

100
. This number, if multiple conformations of each

library member is considered, dramatically increases. The
enormous size of these numbers indicate that there are far too
many possible structures to prepare through chemical
synthesis or even generate in silico.

The realization that, even in virtual screening programs,
only a subset of all possible compounds can be examined
has prompted many investigators to consider methods to
reduce the library to a manageable size [22, 23]. Care should
be taken to ensure that those compounds remaining in the
virtual library have desirable properties for potential drug
leads [24-26].

Composition of a Virtual Library

It has become desirable to prepare descriptors for
chemical libraries to evaluate how much of chemical space is
sampled, often referred to as the diversity of a given library
[27, 28]. A simplified version of the binding of large
molecules by small molecules regards the ligand as a series
of interacting groups (VDW, electrostatic, H-bond
donor/acceptor) projected in three-dimensional space [29,
30]. When a molecule presents these groups in the correct
orientation to make energetically favorable contacts with
side-chain or backbone groups in the protein, binding can
occur. In considering the diversity of a library, the types of
groups and their relative orientation are critical, but not
easily defined parameters. Despite the difficulty, a number of
different computational descriptors such as Tanimoto
coefficients have been formulated to define the degree of
difference between members of a library [31, 32]. These
types of dissimilarity analyses are often used to guide
compound clustering whereby molecules that are structurally
related are grouped together [33]. Frequently, this type of
grouping exercise is used as a library filter and candidate
compounds for screening are selected from each cluster.

In essence, there are different ways of viewing molecular
diversity and the degree of diversity desired is often related
to the particular screening task at hand. In the absence of any
information regarding potential ligands that would bind to a
defined site on a macromolecular target, it is desirable to
have the maximum structural diversity in the virtual library
such that the chance of locating hits increases. For in silico
screening, recourse is typically made to large, public
databases such as the Available Chemicals Directory (ACD)
which contains ~250,000 compounds or the National Cancer
Institutes (NCI) compound database with ~208,000
compounds. These libraries can be regarded as highly diverse
since the members of the library bear little relationship (i.e.
not prepared through parallel synthesis) and are assembled
from random sources (chemical suppliers, academic labs,
etc.). It is often stated that these are the ideal types of
screening libraries since the high diversity is viewed as a
benefit in locating hits. One important caveat with these
libraries (ACD, NCI) is whether the compounds are actually
available. Groups that have relied on these compound
sources frequently report difficulties in actually obtaining all
of the desired compounds that are identified though their
screening efforts.

In contrast to these diverse libraries, focused or biased
libraries can be used when some knowledge of an active
ligand structure is available [34]. These are typically second-
generation libraries constructed around a hit located from the
larger, more diverse screening libraries. Libraries of this type
tend to be much smaller (hundreds to thousands of
compounds) and are built around a single, central scaffold.
These libraries are lower in diversity with regard to all
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chemical space but represent a greater depth of diversity in a
local region of structure space. Focused libraries often take
on the familiar attributes of traditional medicinal chemistry
programs as a lead compound is heavily analoged by altering
the appendages around a central core structure. There have
also been a variety of attempts to generate smaller, focused
libraries by matching the library members to a particular
pharmacophore [35], produced either from a known ligand or
from the mapping of a binding site.

In recent years the focus on drug-like or lead-like
compounds has emerged as a primary concern in the early
stages of drug discovery. It has been appreciated for some
time that many drug candidates fail because of poor
pharmacokinetic parameters. Several guidelines, most
famously Lipinski rules [36], have been developed to relate
structures of compounds to ADME (absorption, distribution,
metabolism and excretion) properties [25]. Critical
parameters include cLogP, molecular weight, rotatable
bonds, H-bond donors/acceptors, Caco-2 permeability, etc.,
many of which are now evaluated computationally to filter
virtual libraries to remove compounds with poor
druggability from consideration very early in the drug
discovery process [37].

TARGET SELECTION

The structure of the target macromolecule is usually
obtained by one of three techniques: X-ray crystallography,
nuclear magnetic resonance (NMR) or homology modeling
from a previously determined structure. Crystal structures are
the most common choice, but the method of structure
determination is often a consequence of the ability of the
protein to crystallize, the availability of instrumentation and
the expertise of the investigator.

X-ray crystal structures are an excellent source for the
target structure. A large number of crystal structures of
different macromolecules are available from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein
Database. The majority of deposited coordinates originate
from soluble proteins since these are most amenable to
crystallization. The number of membrane protein structures
is steadily increasing with improvements in membrane
protein purification and crystallization techniques. One
specific family of proteins, the G-protein coupled receptors
(GPCRs) represent excellent drug targets, but are difficult to
crystallize due to their membrane-spanning component. The
structure of rhodopsin [38] was recently determined and is
often used as a starting point for homology modeling of
other GPCRs.

A good crystal structure for structure-based drug design
meets certain statistical metrics achieved during the model
building and refinement process. Higher resolution data, that
is, data with diffraction intensities extending to at least 2 Å
(where lower numbers indicate higher resolution and the
distance between sampling planes) yield electron density
maps that are better defined and models that are often more
accurate. The success of the model building and the
refinement is primarily judged based on the agreement with
the electron density map (measured by the R-factor and free
R-factor), the standard deviations of the bond lengths and
angles from known values and agreement with good

biophysical sense. Temperature factors indicate the relative
motion of the atom by a number in Å

2
 of the transcribed

circular space. Atoms with higher temperature factors have
less precisely determined coordinates than atoms with lower
temperature factors. Structures suitable for drug design
usually have diffraction intensities that extend beyond 2.5
Å, allowing the atoms of the model to be accurately placed.
The R-factor should be lower than 0.25 and the R-free
should be lower than approximately 0.28. The standard
deviations from known bond lengths and angles should be
no more than 0.001 Å and 3 °, respectively. The temperature
factors of atoms of interest, those in the binding site and any
water molecules that will be maintained during the
procedure, should be at the average or lower than the average
temperature factor for the entire molecule.

There are often several crystal structures deposited in the
database for a single protein. A comparison of the apo
structure, without ligands bound, and a structure of the
target with ligands bound or a comparison of multiple
ligand-bound structures can reveal some of the
conformational changes associated with ligand binding.
Superimposing many structures of the target provides a more
comprehensive view of the ensemble of possible
conformations that the target can capably assume in
solution. The ensemble, therefore, provides a more
comprehensive view of the possible conformations that
could be encountered in solution. It is possible to dock
libraries of compounds against the entire ensemble and, in
fact, allow the ensemble to simulate the flexibility of the
protein [39].

Initial target structures can also be determined using
NMR methods. A great advantage to using NMR is that the
protein, although highly concentrated, is in the solution
phase and is not subject to the forces of crystal packing.
Usually multiple NMR spectra (

1
H, 

13
C, 

15
N) are needed for

structure determination and the acquisition of labeled protein
can be very difficult and costly. A well-determined NMR
structure has few violations (observed resonances that are
unexplained in the model), low standard deviations with
ideal bond lengths and angles (same tolerances as reported
for crystal structures) and a high total number of NOE
restraints per residue. An NMR structure with a low standard
deviation between individual members of the ensemble and
the average is often more precisely determined than one with
larger standard deviations in the ensemble [40]. Since NMR
structure determination results in multiple models, one
question that arises is whether to use the average structure,
for which no experimental information may exist, or to use
one or all of the individual structures of the ensemble.
Again, multiple structures can be used in docking and can
simulate the range of flexibility of protein residues.

SAR by NMR [41] is an efficient technique to rapidly
screen new ligands and examines the changes in resonances
of residues known to interact with an initial ligand. Briefly,
chemical shift data for a target protein are measured and a
structure of the protein is determined. The protein is then
incubated with a ligand at a particular concentration and new
chemical shifts are measured. If the chemical shifts of
residues in the ligand-binding pocket are perturbed from
those measured with the protein alone, the ligand is assumed
to have bound the site. If the chemical shifts are not
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perturbed, then increasing concentrations of the ligand are
added to determine the concentration at which the shifts are
evident. This technique was very effectively used to screen
ligands that bind to FKBP [41].

Homology modeling is another method that results in a
structure of the target. This method is less frequently used,
however, because of the lack of experimental information for
the target. The quality of the homology model is judged
based on adherence to ideal values for bond lengths and
angles and the number of template structures, since a greater
number of template structures encompass a greater number of
possible structures of members of that family.

BINDING SITE IDENTIFICATION

A crucial step in preparing the target for virtual screening
is the identification of the proper ligand binding site.
Ideally, the ligand binding site is well-defined and capable
of specifically binding a small molecule that will modulate
its function. In many cases, such as enzymes, the targeted
ligand binding site is well-known, in other cases, such as
small molecules that disrupt protein:protein interactions, it
is more obscure.

Enzymes represent a large percentage of the validated
drug targets. Identifying the ligand binding site of an
enzyme to be used for virtual screening is usually quite easy
since the active site has already evolved to bind small
molecule ligands. Often, the crystal structure of an enzyme
bound to its substrate, cofactor, or both, is used as the
initial starting point. The small molecule ligands are
removed from the structure and several compounds are
screened against the active site structure. The apo enzyme
structure, if available, is also a good potential starting point
since this structure may represent a more accurate picture of
the state of the enzyme in the absence of ligands. However,
several enzymes undergo conformational changes upon
ligand binding [42, 43] and it is often difficult to reproduce
these changes in silico. Allosteric sites, sites removed from
the active site but capable of binding a small molecule that
affects the conformation and activity of the enzyme, also
represent good choices for target binding sites for virtual
screening. In the case of p38 MAP kinase, a small molecule
inhibitor binds an allosteric site with a subnanomolar Ki
[44].

There are several excellent examples of virtual screening
against enzymes, using the active site as the target ligand
binding site. HIV protease represents one of the most well-
known examples [45-49], there are also many examples
involving dihydrofolate reductase (DHFR) [50, 51].
Thymidylate synthase (TS) is an interesting example since
many of the efforts for virtual screening have targeted the
cofactor, not substrate, binding site. The substrate of TS,
deoxyuridine monophosphate (dUMP), is involved in many
other cellular processes. Small molecules that target this site
could potentially target several other sites on different
macromolecules, creating toxicity problems. The cofactor,
5,10-methylene tetrahydrofolate, however, is not involved in
other cellular processes and therefore represents a better
choice for targeted ligand binding.

Receptor ligand binding sites are also reasonably well-
defined. The nuclear hormone receptor ligand binding

domains have been targeted in the search for therapeutics for
several diseases including hyperthyroidism, diabetes and
cancer. The structures of several ligand binding domains of
nuclear hormone receptors bound to agonists and the
structure of the estrogen receptor bound to tamoxifen, an
antagonist [52], have been determined. These structures can
be used as starting points to identify new agonists and
antagonists.

IDENTIFYING PREVIOUSLY UNKNOWN LIGAND
BINDING SITES

In some cases, the ligand binding site to be used for
virtual screening against a target protein is not known a
priori. For example, it is often difficult to characterize the
site of interaction between two proteins and as such it can be
very difficult to locate a site to disrupt the interaction. Three
algorithms that identify ligand binding sites will be
discussed.

GRID [53] is one of the first algorithms developed to
identify ligand binding sites on proteins. GRID calculates
the interaction energy, using a simple force field with terms
for the Lennard-Jones potential, electrostatics and hydrogen
bonds, between a probe molecule such as water, a methyl
group, an amine nitrogen, carboxyl oxygen and hydroxyl
and a protein. The calculated interaction energies are
displayed as contour surfaces, allowing the user to adjust the
contours to eliminate non-specific interactions. Later
improvements in the algorithm [54] extended the ability of
GRID to handle probes capable of three or four hydrogen
bonds. This extension is important in the treatment of water
molecules that are capable of donating two and accepting
two hydrogen bonds.

GRID was especially useful in the development of
neuraminidase inhibitors. Neuraminidase is a membrane-
bound glycoprotein of the influenza virus and is responsible
for destroying the hemagglutinin receptor. Neuraminidase
inhibitors have been sought for the treatment of influenza
since inhibition of the enzyme leads to slower rates of viral
attachment to the cell. The structure of neuraminidase [55]
bound to an initial inhibitor and transition state analog,
Neu5Ac2en, Fig. (2 ), shows that modifications to
Neu5Ac2en may improve the potency of the inhibitors.
Using GRID, favorable binding sites for carboxylate and
amino nitrogen probes were predicted. Substitution of a
hydroxyl group at the 4-position of the pyranose ring of
Neu5Ac2en by an amino or guanidinyl group was predicted
to increase interactions with a nearby Glu 119, Fig. (2). In
fact, 4-amino-Neu5Ac2en and 4-guanidino-Neu4Ac2en
bound to neuraminidase with Ki 50 nM and 0.2 nM,
respectively. X-ray crystal structures of the complexes
showed that the amino and guanido groups bound to
locations close to those predicted with only small changes in
the interactions between the guanidinyl group and the
glutamic acid residues [56].

The algorithm, Multiscale [57], addresses the question of
where a drug candidate molecule will bind to a 3-
dimensional structure of the protein. The brute force
approach used by GRID, in which a small probe group is
used to locate a binding site, is not practical for a larger
ligand or the examination of an entire protein. Glick, et al.
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Fig. (2). Neuraminidase bound to guanidinoNeu5Ac2en, the guanidino group was predicted by GRID.

estimate that, for a 35 atom ligand, a 3,500 atom protein
and reasonable search parameters, 1.5 x 10

14
 nonbonding

interactions would have to be calculated to scan the possible
docking configurations. Instead, they support a method
called the multiscale approach derived from signal and image
processing.

The multiscale approach relies on a scaling operator that
removes the fine levels of detail to emphasize larger features.
A k-means clusters algorithm generates a series of ligand
models, each one with an increasing level of detail. An
example using nevirapine, the HIV reverse transcriptase
inhibitor, shows that the first cluster is a single point at the
mean position of the ligand. The second cluster contains two
feature points, each removed to the furthest distance from the
mean position. The final cluster contains nine feature points
at different positions around the ligand.

The first cluster, consisting of the single feature point, is
docked to the protein and low-energy configurations that
have lower energy than a given threshold are retained. The
second cluster, with two points at either end of the ligand, is
now docked and low-energy configurations are retained. At
this stage, any potential sites that are not large enough to
accommodate a ligand with the axis defined by the two
points are rejected. With increasing levels of filters generated
by each cluster, the entire series of clusters for a particular
ligand is docked against the target protein. Surviving
configurations reveal the region where the ligand may dock
successfully.

The multiscale algorithm was tested using several
protein:ligand complex structures from the PDB. In all
cases, except one, the distance between the centroid of the
ligand in the crystal structure and the centroid of the ligand
in the predicted configuration fell between 0.62 and 1.68 Å.
The test cases demonstrated success under some very

difficult circumstances: phosphocholine, a very small
molecule and therefore potentially capable of binding several
sites, was correctly predicted to bind McPC-603, the
immunoglobulin Fab-phosphocholine complex, and three
non-nucleoside inhibitors were correctly predicted to bind
HIV reverse transcriptase, despite the disparity of size
between the ligand and protein. Additionally, the algorithm
can handle cases in which the protein is flexible since it was
able to predict binding modes for ligands against structures
of proteins even when they adopted different conformations.

Glick, et al. used the multiscale approach to predict a
key binding site on the anthrax protective antigen heptamer.
In order for anthrax toxin to be lethal, the protective antigen
(PA) must undergo proteolytic cleavage, form a heptamer
and bind the edema factor (EF) and lethal factor (LF). It was
recently reported [58] that the YWWL tetrapeptide inhibited
the binding of the PA to EF and LF. Identifying the
tetrapeptide binding site on the PA heptamer, Fig. (3),
allows the virtual screening of 3.5 billion small molecule
compounds for candidates that will bind to the PA
heptamer-binding site, using a distributed computer screen-
saver project [59].

Small molecule compounds are often sought to disrupt
key protein:protein interactions. The structure of the
complex of the two proteins or the structure of a peptide
from one protein bound to the other allows the identification
of the protein:protein interaction site. Proteins often
associate using “hot spots”, compact regions responsible for
most of the affinity of the interaction. The region for
targeted virtual screening can be the “hot spot”, identified by
structures of the complex or by site-directed mutagenesis
[60] or the region resulting after removal of one of the
proteins or the peptide from the structure. This strategy has
been used successfully in the identification of inhibitors that
disrupt the association of Bcl-2 and other anti-apoptotic
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Fig. (3). Anthrax protective antigen heptamer. The binding site for a tetrapeptide is noted.

proteins [61] using a homology model of Bcl-2 bound to a
peptide from the Bak protein. The Bcl-2 case study is
discussed in greater detail in the Case Studies section of this
review. In another example of this method, NMR revealed
the binding site between IL-2 and the IL-2 receptor (IL-
2Rα). Ro26-4550 was designed as a peptidomimetic of the
IL-2 portion of this site. A crystal structure later revealed
that Ro26-4550 bound to IL-2 itself, at the IL-2Rα  binding
site [62]. Since Ro26-4550 did not have any cell-based
activity, it was abandoned, but more potent derivatives
based on Ro26-4550 were designed using a fragment-based
approach [63].

DOCKING

Once the virtual library is created and the target is
prepared, including the specification of the ligand binding
site, the library must be docked into the target site and
evaluated for goodness-of-fit. The two stages represented in
this step are 1) docking – the search for the conformation
and configuration of the ligand in the binding site and 2)
scoring – the evaluation of the interaction energy between
the target and ligand. Many previous reviews have
extensively covered the aspects of docking and scoring [10,
64-67] . This review will not serve to reiterate that material,
but will cover some of the essential questions raised in
considering a docking problem. Specifically, the flexibility
of ligands during docking, the treatment of ligands as
fragments and the flexibility of the target will be discussed.

Ligand Flexibility During Docking

Ligands may adopt different configurations with different
proteins, therefore allowing ligand flexibility is important in

the docking process. A library of pre-calculated ligand
conformers may be generated and docked into the target,
each conformer treated essentially as a new ligand. Any
algorithm that reliably generates accurate ligand conformers
could be used to generate this library. An advantage to this
method is that the ligand conformers only have to be
generated once. DOCK [68], EUDOC [69] and FLOG are
examples of algorithms that can use a pre-generated
ensemble of ligand conformers.

Alternatively, the ligand could be allowed to be flexible
in the ligand binding site during the docking process and the
energy of interaction with the target assessed on the fly.
Several methods including incremental construction, Monte
Carlo generation and genetic algorithms carry out this task.

During incremental construction, rigid portions of the
ligand, or “anchors”, are docked first, followed by the
flexible portions. An early implementation of this method
[70] broke the ligand into a small set of rigid fragments that
were docked separately into the site, using DOCK, later
fused and finally, energy minimized. DOCK 4.0 extends
this method by docking the anchor and growing the flexible
portions of the ligand [71]. Rarey, et al. [72] presents an
incremental construction algorithm that samples the
conformation space of the ligand and uses a hierarchical
system for placing the flexible pieces of the ligand. The
rigid portion of the ligand, or the base, is placed first,
maximizing interactions between the fragment and the
protein. Many alternatives for the placement of the flexible
portions of the ligand, starting with those nearest the base,
are considered and only those with favorable energies are
kept for sequential rounds during which additional flexible
portions are added. This incremental construction algorithm
is implemented in FlexX [73].
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In Monte Carlo implementations, the ligand undergoes
random changes in translation, orientation and torsion
angles. The structure is minimized and the energy is
evaluated, forcing a decision to keep the new configuration
or to reject it and start with a new random change.
AutoDock [74], a method devised by Caflisch [75],
MCDOCK [76] and Prodock [77] all use Monte Carlo
methods during the docking procedure.

Genetic algorithms are another method to generate ligand
conformers during docking. Genetic algorithms select the
most “fit” conformers to continue to the next generation,
allowing diversity by “mutations” during each generation.
Jones, et al. [78] wrote the algorithm, GOLD, which allows
full acyclic and partial cyclic flexibility of the ligand and
partial flexibility of the protein receptor. The GOLD
program was tested on 100 cases of protein:ligand
complexes derived from the PDB and achieved a 71 %
success rate in reproducing the experimental binding mode.

Treating Ligands as Fragments

Docking fragments, for example functional groups such
as phenyl rings, hydroxyl, methyl or carboxyl groups, is
another approach toward ligand flexibility. LUDI [79]
exploits this advantage by using a library of small molecule
fragments that bind to the target in an independent fashion
and are subsequently joined to form a single entity. In a
recent application of the LUDI approach, inhibitors of
bacterial DNA gyrase were designed and developed [80].
DNA gyrase is a bacterial-specific topoisomerase involved in
DNA replication, transcription and recombination. Using the
structure of the ATP binding site on one of the two subunits
of DNA gyrase (B) and a pharmacophore model that
emphasized hydrogen bonding to two key groups and
lipophilic interactions with other residues in the active site,
Bohm et al. used LUDI to screen the ACD and a Roche
compound inventory, a total of approximately 350,000
compounds, to find novel inhibitors of DNA gyrase [80]
LUDI was used to dock small “needles”, so-named because
of their ability to reach deep into pockets of the target site.
The many hits that resulted from the search were filtered
according to molecular weight, to diversity properties
according to Tanimoto coefficients and manual selection.
Six hundred compounds from the virtual screening were
tested in biological assays that examined ATPase activity.
These assays included a number of control enzymes capable
of ATP hydrolysis. Hits were subjected to validation tests
including supercoiling assays, surface plasmon resonance
assays, elaboration of the initial SAR, analytical
ultracentrifugation experiments, heteronuclear 

1
H/

15
N

correlation NMR spectroscopy and X-ray analysis. These
validation experiments narrowed the list of potential
candidates to seven structural classes. Primarily, the X-ray
structures and secondarily, the preliminary SAR data of the
validated needles and SAR data for previously known
inhibitors were employed to guide the optimization of the
needle hits and led to inhibitors that are potent and ten times
more active than the best known inhibitor, novobiocin.

CombiSMoG is an algorithm that incorporates the
principles of combinatorial synthesis, a knowledge potential
and a Monte Carlo ligand growth algorithm [81]. The
potential is based on interactions observed in a large (1,000)

representative set of protein:ligand complexes in the PDB.
Ligands are generated in the active site from 100 common
functional groups in the program’s virtual combinatorial
library. Steps in the growth algorithm represent additions of
random fragments from the library. The energy of the ligand
after each incremental addition of a new fragment is assessed
and evaluated according to a Boltzmann criteria, biasing the
choice toward low-energy complexes.

In an elegant application of CombiSMoG, inhibitors
were sought against human carbonic anhydrase, an enzyme
targeted in the treatment of glaucoma. A starting fragment,
para-substituted benzene sulfonamide, with a well-defined
binding orientation, was chosen for design. Ligands were
grown from one of the carboxamido hydrogens of the
benzene sulfonamide. The five top-scoring ligands were
energy minimized and the R and S isomers, both of which
had low CombiSMoG scores, were synthesized. The R and
S antipodes had 30 pM and 230 pM inhibition constants,
respectively, making the R isomer the most potent human
carbonic anhydrase inhibitor known. Crystal structures of the
inhibitors with the enzyme verify the predicted binding
modes.

Target Flexibility

Many proteins respond to the introduction of a ligand
with structural changes. The computational time needed to
calculate both protein and ligand flexibility, especially while
docking a large library, can be quite high and therefore,
many docking programs assume a rigid protein model. For
some proteins that undergo significant conformational
changes, this assumption can create hit lists that do not
reflect the results of biological assays. The issues inherent in
the “rigid receptor problem” have been extensively reviewed
[43, 65, 82].

Multiple structures of a target can be compared in order
to decide whether a particular protein needs to be treated as a
flexible entity. Davis and Teague [43] review several cases,
comparing different crystal structures of many targets, and
show that significant conformational changes are often
governed by the additive conformational changes of
hydrophobic portions of a protein. Biochemical data may
also indicate that conformational flexibility is an important
component of ligand binding for a particular target.

Ensembles of target structures may be used to simulate
protein flexibility. Methods using multiple crystal or NMR
structures [39], molecular dynamics [83] or side-chain
rotamers [42, 84] have been used to simulate the range of
conformations an active site may adopt. Docking algorithms
such as SLIDE [84], FlexE [85] and MCSA-PCR [86] use
ensembles to allow some degree of protein flexibility during
docking.

Scoring

The scoring process evaluates and ranks each ligand pose
in the target site. Scoring can involve a simple forcefield
that predicts the enthalpy of binding using van der Waals
repulsive and dispersive functions (often the Lennard-Jones
6-12 potential), electrostatics and hydrogen bonds. More
accurate scoring functions often include a correction for the
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Table 1. Summary of Case Study Features

Case study Structure
Source

Library Source Pharm.
constraint?

Library
filtering?

Hit-to-
Lead?

Docking
Program

Ref.

CDK X-ray Maybridge N N Y LIDAEUS 91

Carbonic
anhydrase

X-ray Maybridge and
Leadquest

Y Y N FlexX 93

TS X-ray ACD N Y Y DOCK 96

Cathepsin D X-ray Focused N N Y DOCK 98

Aldose reductase X-ray ACD Y Y N FlexX 99

Chk-1 X-ray AstraZeneca Y Y N FlexX 100

Rm1C X-ray Focused Y N N FlexX 101

Bcr-Abl X-ray Commercial N Y N DOCK 103

Thyroid receptor Homology
Model

ACD N Y Y ICM 104

Retinoic acid
receptor

Homology
Model

ACD N N N ICM 105

NK-1 Homology
Model

Various Y Y N FlexX 107

K+ channel Homology
Model

China Natural
Product Database

N N N DOCK 108

Bcl-2 Homology
Model

NCI N Y N DOCK 61

Rac-1 X-ray NCI N N N FlexX 110

p56 Lck X-ray Various N Y N DOCK 111

solvation of the ligand and target and the dielectric constant
of the medium, either determined as a constant or
determined continuously in a distance-dependent manner
such as with the Poisson-Boltzmann or generalized Born
equations. In the most rigorous form, scoring can calculate
the free energy perturbation. Each step from a simple scoring
function to a more complex scoring function involves a
greater computational price. Often, when screening a large
virtual library, a simple scoring function suffices for an early
cutoff and more precise scoring functions are used at later
stages.

There are several different scoring functions associated
with different docking/scoring algorithms and these have
been extensively reviewed [10, 87]. In general, many
investigators have found that rescoring the top hits from
docking using several different scoring functions, a process
called consensus scoring [88], is valuable. Those hits
appearing at the top of multiple lists are then selected for
further investigation.

Charifson, et al. analyzed two different docking methods
and thirteen different scoring functions for ligands targeting
p38 MAP kinase, inosine monophosphate dehydrogenase
and HIV protease. Consensus scoring provided a significant
reduction in the number of false positives that arose during
docking. Perola, et al. [89] used the same three systems
(p38 MAP kinase, IMPDH and HIV protease) to compare
three docking functions (Glide, GOLD and ICM) with
respect to their ability to reproduce a crystallographically
observed ligand orientation and three different scoring
functions with respect to their ability to discriminate

between actives and inactives. They found that energy
minimization and reranking of the top poses overcomes
some of the limitations of the individual docking programs.
Their results confirm that the choice of the best scoring
function is system-dependent but that consensus scoring
reduces the number of false positives.

Evaluation

After docking a virtual library, scoring the ligands in that
library and, possibly, rescoring and reranking those ligands,
some decision must be made to prioritize the ligands for
purchase or synthesis and later, biological testing. Many
groups use a means of visual evaluation at this stage.
Criteria often used in visual inspection are: formation of key
hydrogen bonds or electrostatic interactions, surface
complementarity and the stability of the configuration of the
ligand in the target site compared to conformational
preferences of the free ligand. Other criteria may be imposed
at the evaluation stage as well, including the ability to
synthesize or purchase the intended ligand or the ability to
synthesize derivatives and second generations of the hit.
Additional filters may be imposed for the drug-like
properties of the hit. Teague, et al. [90] suggest that it is
easier to optimize small (MW 100-350) and less lipophilic
compounds to increase potency than to optimize larger
compounds to increase pharmacokinetic and metabolic
properties. These authors examined historical data for the
development of drug molecules from leads and found that
the most effective strategy for improving the potency of a
lead was the addition of hydrophobic moieties on the
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Fig. (4). Structure of CDK inhibitors. (a) initial hits from VLS (b) initial optimized lead structure (c) lead structure found by medicinal
chemistry optimization. All values are measured against CDK2.

starting scaffold. By necessity, this process increases the
molecular weight and clogP value of the final optimized
structure, therefore the smaller and less lipophilic
compounds should be chosen from the hit list in order to
arrive at optimized structures that still maintain physical
properties consistent with drug-like candidates.

RECENT CASE STUDIES

In the second half of the review, fifteen case studies
involving VLS in lead discovery will be examined in detail.
These case studies have been grouped into three broad
classes: catalytic site inhibitors, ligand binding domains and
inhibitors of protein:protein interactions. The discussion of
each case study will encompass the methodology applied,
any filtering applied to the VLS library, the results of the
VLS study and any further lead optimization. Table (1),
offers a summary of the key features of each case study.

Catalytic Site Inhibitors

CDK

The cell cycle contains various checkpoints to ensure that
the integrity of the daughter cells is maintained throughout
the mitotic process. Some transformed cells override these
checkpoints in order to maintain a high rate of proliferation.
Cyclin-dependent kinases (CDKs) are one of the key players
in checkpoint regulation and it has been shown that
inhibition of these enzymes can have anti-cancer effects. A
group in the United Kingdom recently used a VLS approach
to the discover novel inhibitors of CDK [91]. These workers
utilized LIDAEUS, an in-house docking program that
generates a cubic grid to define the binding pockets. The
candidate compounds were docked into the active site of
CDK2 generated from the X-ray crystal structure of CDK2
complexed with staurosporine. A 3D virtual library was
generated from ~50,000 commercially available compounds
from the Maybridge database. Screening of the database to
yield the top 28 compounds gave a 29% hit rate in vitro as
opposed to a 7% hit rate with 28 compounds chosen
randomly from the same database. One of the families of
compounds found in the screening was the 2-amino-4-
heteroaryl-pyrimidines (1-3), which showed no cross-
reactivity against other kinases such as PKCα  or ERK-2,
Fig. (4).

These three compounds found in the screen were utilized
as a starting point for the design of a superior inhibitor.

Modeling of these compounds in the crystal structure
suggested that an aromatic ring bearing an electron donating
substituent linked to the pyrimidyl amino group would
generate additional interactions in the binding pocket not
utilized with these three inhibitors. Compound (4) was
designed to include this group and showed an improved
activity of 900 nM against CDK2. X-ray structures of each
of the four ligands (1-4) bound to CDK2 were determined
and revealed that each of these compounds bind the ATP
binding site in a similar orientation as that predicted in the
docking Fig. (5 ). In a follow up study [92], these
compounds discovered through VLS were used to initiate a
traditional medicinal chemistry effort to find CDK inhibitors
with higher levels of potency. This led to the preparation of
inhibitor (5) with a Ki value of 2 nM. This compound
stopped progression through the cell cycle in A549 cells.

Human Carbonic Anhydrase

Using a multiply-filtered database and a staged docking
approach, Gruneberg, et al. [93] discovered novel inhibitors
of human carbonic anhydrase (hCAII), an enzyme target in
the treatment of glaucoma. High-resolution crystal structures
of hCAII bound to several ligands have been determined and
a comparison of 24 of these structures reveals that the
binding site is relatively constant. The initial database for
docking contained 90,000 compounds from the Maybridge
and LeadQuest libraries that satisfy the Lipinski rules,
including 35 known inhibitors of hCAII for calibration.
Several filters were applied to reduce the number of
compounds in the virtual library. The first filter selected
ligands that bear functional groups that could bind a zinc
atom. A second stage of the first filter used “hot spots” of
binding derived from LUDI, GRID, SuperStar and
DrugScore [53, 94, 95] - these were translated into a protein-
derived pharmacophore model, leaving 3,300 compounds.
The second filter excluded compounds that were not similar
to known reference ligands. Finally, 100 compounds were
docked using the program FlexX [73], and visually
inspected. Four water molecules, found in every crystal
structure of the enzyme bound to inhibitors, were kept in
place during the docking procedure. Based on the visual
inspection, which included assessing the degree of
occupancy of the amphiphilic binding pocket next to the
zinc atom, the number of rotatable bonds in the ligand,
quality of the overall binding conformation and formation of
hydrogen bonds to two key residues in the active site,
thirteen compounds were selected for testing. Three of the 13
compounds are subnanomolar inhibitors, one is a nanomolar
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A                                                             B

C
Fig. (5). Bound structures of inhibitors 1, 2 and 4 with CDK.

A B
Fig. (6). Inhibitors of human carbonic anhydrase bound to the enzyme.

inhibitor and seven are micromolar inhibitors. Crystal
structures of two discovered inhibitors bound to with the
enzyme verify the predicted docking poses, Fig. (6).

Thymidylate Synthase

Thymidylate synthase (TS) plays a critical role in the
folate biosynthetic pathway, responsible for the production
of deoxythymidine monophosphate (dTMP). As such, its

inhibition leads to the cessation of production of one of the
key nucleotides for DNA synthesis, making TS a validated
anticancer and antipathogenic drug target. In efforts to
discover novel scaffolds for TS inhibitors that are
compatible with solid-phase in-parallel derivatization and
would bind the folate site [96], compounds from the ACD
(153,516 total) were docked into the active site of L. casei
TS with the program, DOCK. A list of the top 400
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Fig. (8). Crystal structure of didansyl tyrosine in E. coli TS.

compounds, scored for van der Waals interactions and
electrostatic interaction energy and corrected for ligand
desolvation, was generated. Five compounds that show a
number of polar interactions and the opportunity for later
parallel synthesis were chosen for in vitro enzyme assays.
Dansyl hydrazine (6), Fig. (7a), was shown to inhibit TS
competitively with an IC50 of 439 µM.
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7

Fig. (7). a) Dansyl hydrazine, discovered from the original
DOCK run and b) didansyltyrosine, the optimized lead
compound.

Seven dansyl amino acid analogs were tested, resulting
in the selection of O-dansyl-L-tyrosine with an IC50 of 163

µM and Ki of 65 µM. A small library of 33 amino
derivatives of O-dansyl-L-tyrosine was synthesized, modeled
and scored in the active site and a new derivative, didansyl
tyrosine (DDT, 7), Fig. (7b), was selected for testing. DDT
has a Ki of 1.3 µM and is 30-fold more active against L.
casei TS than human TS.

A crystal structure of DDT and dUMP, the natural
substrate, with E. coli TS reveals an unexpected binding
mode for the inhibitor [97]. DOCK correctly predicted the
binding pose for the O-dansyl and phenyl rings of DDT, but
the crystal structure shows that DDT binds more deeply in
the active site than DOCK predicted. Much of the new
binding pose can be ascribed to the fact that TS undergoes
significant protein rearrangements on binding DDT. The
interactions seen in the crystal structure explain the binding
affinity of DDT and the specificity is explained by the
interaction with bacterial-specific residues over residues in
human TS.

The selection of dansyl hydrazine from the ACD, using
DOCK, and the further elaboration to create DDT used an
elegant combination of computer-based scaffold selection
and in-parallel synthetic derivatization. The improved
binding affinity of dansyl derivatives, as well as improved
specificity against the human form of the enzyme, validates
this methodology. The crystal structure of the
inhibitor:enzyme complex revealed that, without accounting
for protein flexibility, proper docking poses may not be
discovered.

Cathepsin D

Combinatorial chemistry and structure-based drug design
are two modern methods for drug discovery. Kick, et al.
[98] demonstrated a procedure to combine the two methods
and applied their procedure to discover non-peptidic



Virtual Compound Libraries to Structures of Drug Targets Current Computer-Aided Drug Design, 2005, Vol. 1, No. 1     115

O2N N

O
N

CO2H

9

O
O2N

N N

O S

CO2H HN

S

CO2H

O

N

N S

CO2H

N

NN

S

CO2H

F3C

N

O
N

CO2H

MeO

10 11

12
13 14

S CO2H
O

N

N
H

O
CO2H

N

S

HO2C

15 16
17

a)

b)
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inhibitors of cathepsin D, an aspartyl protease implicated in
cancer and Alzheimer’s disease.

A crucial step in library design is the selection of
compounds to synthesize. Kick, et al. tested two theories for
reducing the synthetic effort: 1) diversity-based approaches
that attempt to maximize the sampling of chemical and
biological properties and 2) directed approaches that select
compounds that are predicted to have favorable binding
affinity to the target. Two reduced libraries were constructed
from a large virtual library of potential inhibitors based on
the (hydroxyethyl)amine isostere (8).

OH R1

O

R3

R4

H
N

O

N R2
S

8

Fig. (9). The (hydroxyethyl)amine isostere (S epimer) as a
scaffold for the design of cathepsin D inhibitors. Diversity was
incorporated at positions R1, R2, R3 and R4.

The directed library was constructed using a structure-
based screening process and the program, CombiBuild, as
well as the structure of cathepsin D. The diverse library was
designed to maximize the variety of functional groups and
structural motifs. The directed and diverse libraries, each
containing 1,000 compounds, were synthesized and assayed.
The hit rate for activity (inhibiting the enzyme to ≥50 %) at
1 µM was 67 compounds for the directed library and 26 for
the diverse library. The hit rate for activity at 330 nM was

23 compounds for the directed library and three for the
diverse library. Seven compounds from the directed library
and one compound from the diverse library were active at
100 nM. In general, the diverse library gave hits that were 3-
4 times less potent than those from the directed library. In
order for the diverse library to achieve the same results as the
directed library, approximately ten times the number of
compounds would have to be synthesized.

Aldose Reductase

Kraemer and co-workers [99] recently disclosed a virtual
screening strategy for the identification of inhibitors of
human aldose reductase. This enzyme is responsible for the
reduction of aldo-sugars to their corresponding alcohols.
Inhibition of this enzyme is viewed as a therapeutic strategy
to alleviate some of the symptoms associated with chronic
diabetes. An ultrahigh resolution structure of this enzyme
(0.66Å) in complex with IDD594, a potent inhibitor, was
recently disclosed and provided an excellent starting point
for the discovery of novel classes of inhibitors. The catalytic
site of the enzyme is located at the center of a (β/α)8 TIM-
barrel and contains a nicotinamide co-factor. The ultra high-
resolution structure permits a detailed examination of the
binding mode of the inhibitor including the protonation
state of atoms. The inhibitor contains an ionized carboxylic
acid which makes an electrostatic interaction with C4 of
NADP+ and functions as an H-bond acceptor from three
different residues: Tyr48, His110 and Trp111. Kraemer et al.
utilized this structural information to search for new
inhibitors of the enzyme. Only a single conformation of the
protein and a non-flexible binding pocket was used. This
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allows for the screening to be executed in a fast and efficient
manner although it inherently limits the scope of the search.
The ACD was used as the starting virtual library and was
passed though a series of hierarchical filters, described
below, to sequentially narrow the library to good lead
candidates.

A 2D filter guaranteed the presence of a functional group
to anchor the anion binding pocket. This anchor group could
be an acid as is found in the bound inhibitor or a carboxylic
acid surrogate such as a hydroxamic acid, tetrazole,
phosphonic acid or sulfonic acid. A second 2D filter
removed compounds in violation of Lipinski rules, with a
MW greater than 350 Da or more than eight rotatable bonds.
This effectively limited the library from 260,000 initial
structures to ~12,500 compounds. The next round of
filtering subjected a 3D version of the dataset to a
pharmacophore match with the UNITY program. The
pharmacophore model used a structure of the bound inhibitor
to aldose reductase and a computational analysis of the
binding pocket that located groups predicted to have
favorable interactions with the putative ligands. Screening of
the ~12,500 remaining entries against this pharmacophore
model further reduced the screening set to 1261 compounds,
97% of which possessed a carboxylic acid. These remaining
candidate molecules were docked into the crystal structure of
human aldose reductase using FlexX and the quality of the
docked structures was evaluated with DrugScore. Only the
best scoring pose for each compound was considered. The
top scoring 120 compounds were grouped into 40 clusters
with SYBYL and the best candidates from each cluster were
evaluated visually. Nine compounds that appeared to interact
favorably with the binding pocket were selected and
examined for biological activity. These nine compounds,
Fig. (10), show a diverse range of functionality although
each retains a carboxylic acid, a result of the initial bias in
the first filter.

Six of nine of the compounds (9-14) were shown to be
active (66% hit rate) in the micromolar range, the remaining
three (15-17) were non-binders. The authors speculate that
these false positives may be inactive because they are less
flexible than the six active compounds.

Chk-1

Recent work from AstraZeneca [100] nicely illustrates the
use of knowledge-based library filtering during a discovery
effort to locate new inhibitors of checkpoint kinase-1 (Chk-1
kinase), a key regulatory enzyme which prevents cells with
DNA damage from progressing through the G2/M
checkpoint in the cell cycle. Inhibition of this kinase has
been shown to sensitize cancer cells to cytotoxins and have
potential for use in combination with other antineoplastic
agents.

The virtual library was generated from the AstraZeneca
compound collection containing ~560,000 chemical entities.
An initial round of prescreening removed compounds that
were unlikely to be good drugs, in this case, compounds
with a molecular weight greater than 600 Da or compounds
containing more than ten rotatable bonds. A 3D
conformational profile of each library member was generated
as a prelude to pharmacophore matching. A two-point
pharmacophore model, defined as a hydrogen bond donor

and acceptor pair separated by a distance of 1.35-2.40 Å, was
generated from knowledge of various kinase inhibitors
bound to the adenine binding pocket. An in-house
computational filter was employed to match the
conformational library to this pharmacophore model, leaving
~200,000 compounds (approximately a 50% reduction in the
size of the virtual library) to be examined though docking to
the X-ray crystal structure of Chk-1 kinase.

Utilizing the extensive structural database of complexes
of kinases and inhibitors that bind to the highly-conserved
ATP binding site, a knowledge-based approach to docking
could be employed to profile compounds that were likely to
have kinase binding motifs within their structures. This
guided docking protocol was performed with FlexX-Pharm
which docks compounds under a defined pharmacophoric
constraint. Since it was known that most ATP-competitive
inhibitors mimic the purine ring of ATP, an interaction with
the backbone NH of Cys87 and the amide carbonyl of Glu85
was set as a requirement during the docking protocol along
with other conserved interactions.

A maximum of 100 poses was saved for each docking
event and the compounds rescored by consensus scoring
methods (PMF and FlexX) which produced ~250
compounds that reached the cutoff set by the investigators.
A final visual inspection of these candidates to remove
compounds displaying unfavorable interactions reduced the
number to 103 compounds to be evaluated through kinase
assays. Thirty-six of the 103 compounds (~35% hit rate)
showed activity against Chk-1 kinase (ATP competitive)
with IC50 values ranging from 110 nM to 68 µM. These
compounds represent four distinct chemical classes with a
0.35 Tanimoto similarity value. Two active compounds are
shown below in Fig. (11).
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Fig. (11). Structure of two VLS hits for Chk-1 kinase.

This example nicely shows how judicial use of
information about related biological receptors can be used to
build knowledge-based filters to eliminate compounds from
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Fig. (12). (a) structure of TDP-rhamnose, (b) general library design with three points of variation, (c) synthetic sequence for library
preparation and (d) structure of the most potent analog.

the virtual library prior to the more computationally
demanding docking and scoring functions.

Rm1C

The application of a structure-guided library protocol to
the discovery of inhibitors against a novel target in
Mycobacterium tuberculosis has recently been reported [101]
and features a virtual library of thiazolidinones as rhamnose
mimetics, Fig (12). The recent emergence of tuberculosis
strains that show multi-drug resistance against a range of
clinically used agents has prompted several investigations to
identify novel targets in the mycobacterium for further drug
development. Babaoglu and co-workers targeted the
machinery involved in the biosynthesis of rhamnose, a
bacterial-specific component of the peptidoglycan layer of
the cell wall. Specifically, they targeted deoxy-D-xylo-4-
hexulose 3,5-epimerase (Rm1C), an enzyme that inverts the
configuration of the 3’ and 5’ hydroxyl groups of the
pyranose ring.

In the design of Rm1C inhibitors, a structure-guided
library was constructed in silico based on an inhibitor of a
related enzyme, MurB. Prior work had shown that 2,3,5-
trisubstituted-4-thiazolidinones were effective inhibitors of
MurB and function as diphosphate mimetics at the
nucleotide sugar binding site. Based on this knowledge, a
generalized thiazolidinone library (21) was formulated as a
mimetic of TDP-rhamnose (20) which allowed for the
introduction of variable groups at three distinct positions
about the heterocycle.

The thiazolidinone is highly versatile and can be easily
prepared through an efficient three-component coupling
process which involves the cyclocondensation of various
amino esters, aldehydes and α -thioacids, Fig. (12c). The
initial products are formed as the esters but can be easily
converted to the corresponding acids though hydrolysis.

A virtual library of 3,888 compounds based on this
thiazolidinone scaffold was generated using
CombiLibMaker. All possible combinations of the products
resulting from the condensation of 24 aminoacids, 27
aldehydes and only two thioacids (R3=H or CH3), including
diastereomers created at positions R2 and R3, were generated
in silico. Once the new compounds were prepared, 3D
coordinates were generated and the structures minimized.
The macromolecular target was derived from the X-ray
crystal structure of Rm1C bound to a substrate analog and
the active site was defined as any residue containing an atom
within 6.5 Å of the bound substrate. The library of 3,519
thiazolidinones was successfully docked into the model and
consensus scoring was carried out using Cscore. The top
scoring 144 compounds (5%) were identified and slated for
chemical synthesis.

The 144 compound sublibrary was prepared in a parallel
fashion using the condensation reaction depicted in Fig.
(12c). This reaction sequence successfully generated the
compounds with 47 of the 144 compounds synthesized both
in the ester (R4=alkyl) and the free acid form (R4=OH).
Utilizing a coupled assay system, 30 compounds were
identified that inhibited the enzyme at a concentration of 20
µM. One derivative (23) completely inhibited the enzyme at
this concentration. However, only seven of these 30
compounds show measurable MIC (minimum inhibitory
concentration) values against M. tuberculosis. The authors
suggest that the low MIC values may relate to poor cell
permeation by these compounds.

This study illustrates how the diversity space covered by
the initial library can be dramatically reduced using a
focused library based on the structure of an inhibitor of a
related enzyme. This required far fewer compounds in the
initial library relative to an unbiased screening effort. If, as
the authors suggest, that the low MIC values against the
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Fig. (13). Crystal structure of Bcr-Abl bound to STI571.

organism are an artifact of poor penetration it may prove
valuable to conduct a preliminary screen on the virtual
library to eliminate compound candidates with poor
pharmacological profiles.

Bcr-Abl Tyrosine Kinase

Inhibitors of Bcr-Abl are essential for the treatment of
chronic myelogenous leukemia. Gleevec (Novartis
Pharmaceuticals), also called STI571, has proven effective in
this regard, but resistance to STI571 has arisen recently. The
amino acid substitution of Thr 315 with Ile [102] and the
loss of a hydrogen bond to Thr 315 is assumed to cause
STI571 resistance. Peng, et al. [103] conducted a virtual
screening effort directed against the catalytic domain of the
Abl tyrosine kinase to discover inhibitors that may
overcome the resistance phenomenon. The crystal structure
of Abl tyrosine kinase bound to a variant of STI571 was
used as the target structure. A database containing 200,000
commercially available compounds was converted into 3D
coordinates. The STI571 binding site without the bound
ligand or bound water molecules was chosen for docking
studies, Fig. (13).

DOCK4.0.1 was used to dock and score the 200,000
compounds in the target site. The top 1,000 compounds
were selected for further analysis. These compounds were
clustered into structurally diverse sets and member
compounds were chosen from individual groups. Fifteen
compounds that obey Lipinski’s rules were selected for
biological assay. Two of these fifteen inhibited the growth
of the Philadelphia-positive K562 cell line in a dose-
dependent fashion with IC50 values of 24 and 29 µM. One
of these novel compounds does not appear to require a
hydrogen bond with Thr 315, suggesting that it may inhibit
STI571-resistant human leukemia cell lines.

Ligand Binding Domains

Thyroid Receptor

Utilizing a combination of homology modeling, virtual
screening, chemical synthesis and focused library design,
Schapira and co-workers were recently able to generate novel
antagonists of the thyroid hormone receptor (TR), a member
of the nuclear hormone receptor superfamily [104].
Antagonism of this receptor is viewed as a new therapeutic
strategy to treat hyperthyroidism which is currently treated
with radiation, invasive surgery or abrogation of thyroid
hormone biosynthesis.

These investigators utilized the crystal structure of other
members of the nuclear hormone receptor superfamily, both
free and bound to various agonists and antagonists, to
generate a homology model of the ligand-binding domain
(LBD) of TR. From these structures, it was observed that
the binding modes of agonists and antagonists differed in
the orientation of a C-terminal helix (H12) that folds onto
the agonist thereby creating a hydrophobic binding pocket.
When an antagonist is bound, the H12 helix is prevented
from folding into the binding cavity. The crystal structure of
the estrogen receptor-α  complexed to raloxifene (an ER
antagonist) and the structure of the agonist-bound TR LBD
were taken as departure points for the generation of a model
of the TR LBD bound to an antagonist. The TR-antagonist
model has the H12 helix folded out of the binding pocket
and retains the structure of the N-terminal domain since this
domain does not differ significantly between the agonist and
antagonist bound state.

The ACD collection, filtered to remove those compounds
with problematic pharmacological properties in accordance
with Lipinski rules, was docked into the TR model using
Molsoft’s ICM virtual library screening module. The
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Lipinski filter effectively reduced the size of the ACD library
from 250,000 to 190,000 compounds. Each of the protein-
ligand complexes was scored based on a grid energy that
included terms for electrostatics and entropy. A second filter
was designed based on the knowledge that nuclear hormone
receptor ligands possessing a sterically demanding group
projecting out of the binding cavity act purely as antagonists
by preventing the H12 loop from folding onto the binding
cavity. This filter eliminated those compounds that,
although scoring within the desired threshold, did not have
such a group. The top 1,000 candidates that passed this filter
were refined in a model that permitted both ligand and side-
chain flexibility. Visual inspection of the top scoring 300
compounds for shape complementarity, flexibility and
hydrogen bonding reduced the target library to 100
compounds to be examined in vitro for TR-receptor
antagonism.

Only 75 of the 100 top-scoring compounds were
currently available from commercial sources. Of the 75

compounds screened, 14 showed antagonist activity against
the TR receptor, Fig. (14).

The best three antagonists are shown above (24-26) and
are illustrative of the wide structural diversity that is
possible in small molecules that bind to the same biological
receptor. The acyl hydrazide (24) showed 90% inhibition of
TR activity at 20 µM concentration and was used as the
starting point for the preparation of a virtual, focused library
of potential inhibitors.

The design of the new library was based on a
combination of structural and synthetic considerations.
Examination of the docked structure of (24) indicated a key
hydrogen bond between the hydrazide oxygen and His-435
and an important interaction between the nitro group and an
arginine sidechain and as such, these two moieties were
conserved in the sublibrary design. Synthetically, a coupling
reaction between a hydrazide and an isocyanate appeared as a
facile process for the parallel synthesis of this library, Fig.
(15).
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Based on commercially available isocyanate building
blocks, a virtual library of 101 derivatives of 1-850 were
prepared, docked and scored as previously described. Eight
of the top 57 compounds were prepared and tested. The new
analogs showed inhibition between 10% and 84% at a
concentration of 5 µM with the most active compound (29)
showing a sub-micromolar IC50 value (750 nM) in a dose-
response assay.

Using a combination of homology modeling, docking
and chemical synthesis, a novel antagonist of the TR
receptor with a nanomolar IC50 value was identified. A nice
feature of this work is the use of focused library synthesis to
greatly increase the activity of an initial hit from a large,
diverse screening library.

Retinoic Acid Receptor

(RAR) agonists and antagonists block the growth of
several neoplastic cells including breast tumor cells.
Schapira et al. [105] developed a homology model of RAR-
γ bound to an antagonist, based on the crystal structure of
RAR-γ bound to an agonist and the structure of estrogen
receptor bound to an antagonist. From there, a model of
RAR-α bound to an antagonist was derived. Docking, using
flexible ligands, flexible receptor side chains and a full atom
representation of the receptor, was carried out using ICM.
The ACD was docked into the site and scored based on
electrostatic, hydrophobicity and entropy parameters. The
top 500 compounds were visually evaluated and 32 of those
were selected for biological assay. The visual selection
criteria for the 32 included those with the best van der Waals
fit or hydrogen bonding. Of the 32 compounds selected for
biological testing, two candidates selectively inhibited
activity by 55% and 33% at 20 µM, Fig. (16).

The models of these candidates with the receptor suggest
that they present an additional arm that protrudes from the
pocket and prevents the active conformation. Possibilities
for increasing the potency of these compounds were evident
from the models of the compounds in the receptor structure.

During this screen, all pharmacophore restraints were
avoided in order to discover novel ligands. The database was
filtered only by a good fit to the receptor and reasonable
bioavailability. The authors acknowledged a compromise
between the time allocated for each ligand and the reliability
of the sampling of conformational space.

NK-1

As previously discussed, G-protein coupled receptors
(GPCRs) are excellent drug targets but have not been

commonly utilized in VLS because of the difficulties
associated with obtaining high-resolution structural
information. A recent high resolution X-ray structure of
bovine rhodopsin encouraged Bissantz and co-workers [106]
to examine the reliability of homology models constructed
from this structure to function in VLS efforts to discover
new modulators of GPCR activity. Six homology models of
human GPCRs were constructed with SYBYL. Models of
the dopamine D3 receptor, acetylcholine muscarinic M1
receptor and the vasopressin V1a receptor were used for
antagonist screening while models of the dopamine D3, β2-
adrenergic and δ-opiod receptors were employed for agonist
screening. The homology structures were refined in the
bound conformation with known agonists or antagonists.
Finally, 990 compounds were randomly chosen from the
ACD that were similar in molecular weight to known
ligands. Ten known antagonists or agonists for each receptor
were added to the virtual library to give six libraries of 1000
compounds each. Flexible docking of the test libraries to the
modeled structures using DOCK, FlexX and GOLD with
seven different scoring functions was studied. These test
cases revealed that the hit rates for locating antagonists for
the D3 and V1a receptors were 20 to 40 fold higher than
random screening. Agonists, on the other hand, were much
more difficult to locate, perhaps reflecting that the models
were derived from the inactive state of bovine rhodopsin,
which is closer to the antagonist rather than agonist bound
state.

In a subsequent study by Evers et al. [107], a successful
model for virtual screening was developed for another
important GPCR, the NK-1 receptor. This study was
conducted using their MOBILE approach which relies on the
refinement of homology models with a known ligand
docked as a further constraint. Again, using the structure of
rhodopsin as a starting point (21% homology with NK1), an
ensemble of 100 preliminary homology models was prepared
and the well-studied NK1 antagonist CP-96345, Fig. (17)
was docked (AutoDock) into the binding site which had
been located by mutational studies. Those complexes that
reproduced key interactions of the inhibitor were used to
generate new homology models. Other known NK1
antagonists with diverse structures were examined in this
model to help guide the creation of a pharmacophore
hypothesis. Using a 2D filter that required the presence of
two phenyl rings and one H-bond acceptor, lead-like
compounds (less than 8 rotatable bonds and MW<450Da)
were selected from 800,000 compounds accumulated from
seven databases. A subsequent 3D filter in the UNITY
program was used to constrain the spatial arrangement
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between the aromatics and H-bond acceptor to produce
11,109 screening candidates. The FlexX-Pharm program was
used to flexibly dock these compounds and the resulting
complexes were scored with DrugScore. Visual inspection of
the best hits to remove compounds with unsatisfied H-bond
donors/acceptors or voids at the binding interface left seven
compounds for biological evaluation. One of these
compounds (33) produced a submicromolar Ki value (251
nM).

K+ Channel

The majority of screening libraries used in VLS-based
discovery efforts are composed either of commercially
available compounds or in-house, proprietary compound
collections. However, natural products have long served as a
rich and diverse source of compounds for new
pharmaceutical leads. A recent disclosure [108] from workers
in China demonstrated that virtual libraries derived from the
structure of natural products can also be valuable databases
for lead identification.

In this study, the screening efforts were directed towards
identifying compounds that could inhibit the function of the

potassium channel. These are pore forming, voltage-gated
ion channels that are responsible for controlling a variety of
cellular processes in both excitatory and non-excitatory cells.
In 1998, the first report of a crystal structure of a potassium
channel, the KcsA channel from Streptomyces lividans was
described at 3.2 Å resolution [109]. This structure provided
the basis for the generation of a homology model of the
eukaryotic Shaker potassium channel and the homology
structure was refined using SYBYL. The China Natural
Product Database, containing structural information on
approximately 50,000 natural products, was used as the
screening library against the homology model of the
potassium channel. Docking was performed against the pore
forming site using DOCK in an attempt to locate inhibitors
that would act by blocking the entry of potassium ion into
the pore formed from the tetrameric aggregate. Complexes of
the 200 top-scoring compounds were minimized and the
compounds inspected visually to locate good potential
ligands. Fourteen natural products were selected for
biological assay, however, only four were ultimately
available for examination, Fig. (18).
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Fig. (19). NMR structure of Bcl-XL bound to the Bak peptide.
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Fig. (20). An inhibitor of Bcl-2 protein:protein interactions.

An examination of the four available compounds (34-37)
using whole-cell voltage-clamp recording in rat brain showed
that all four compounds exerted effects on potassium
channels with each of these showing different preferences and
potencies. Three of the four were determined to be selective
blockers of IK (potassium current) at the 1 mM level.
Further electrophysiological experiments indicated that the
compounds do bind to the extracellular site and block the
movement of potassium ion current. This is one of the few
examples that used natural product libraries in VLS. The
level of success is quite surprising in light of the fact that a
homology model based on a structure of relatively low
resolution was used for docking.

Inhibitors of Protein:Protein Interactions

Bcl-2

Bcl-2 is a member of a family of proteins that regulates
programmed cell death (apoptosis). Bcl-2 is an attractive
anticancer target since overexpression of the protein has been
seen in many types of cancer, including breast, prostate and
lymphoma. The formation of heterodimers of Bcl-2 or Bcl-
XL and a number of other proteins, including Bak, Bad and
Bax is believed to play a role in the prevention of apoptosis.
Therefore, inhibitors targeting the interaction of Bcl-2 and
Bcl-XL, specifically the Bak BH3 peptide binding site, were
sought using VLS [61]. The authors first used homology
modeling to generate ten models of the structure of Bcl-2
based on the experimental NMR structure of Bcl-XL in
complex with the Bak BH3 peptide. The average model was
then refined with extensive molecular dynamics simulations.

The target binding site was identified as all residues
within 8 Å of the Bak BH3 peptide binding site since this
interaction provided a reasonable model for the interaction of
Bcl-2 with other proteins. The National Cancer Institute
database of compounds with structures and biological data
that are accessible to the public, comprising 206, 876 “open”
compounds, was screened against the modeled structure of
Bcl-2 using the program, DOCK. The top 500 compounds
with the best scores, based on a simple enthalpic energy
scoring function in DOCK, were considered and further
filtered based on those with nonpeptide character. Thirty-five
compounds were obtained from the NCI and tested in
biological assays. A fluorescence-based polarization binding
assay established an IC50 value of 0.3 µM for the interaction
of the Bak BH3 peptide and Bcl-2. Seven of the 35
compounds from the NCI showed dose-dependent,
competitive inhibition at levels greater than 100 µM.

Compound (38) potently inhibits cell viability and
growth and represents a novel class of Bcl-2 inhibitors.
Compound (38) was synthesized and shown to induce
apoptosis in a dose-dependent manner in cell lines
overexpressing Bcl-2. Compound (38) was also shown to
bind Bcl-XL specifically with a binding constant of 7 µM.
NMR spectra of (38) in complex with Bcl-XL, chosen
because of its greater solubility over Bcl-2 and therefore its
amenability to structure determination, were measured and
peak shifts were evident for those residues in the region of
the BH3 binding pocket of Bcl-XL.

Rac 1

Structure guided identification of a novel binding site
formed between two proteins was recently used by Gao [110]
and co-workers to identify an inhibitor of a Rho GTPase, a
key signal transduction mediator implicated in a variety of
disease states including cancer. Activation of the Rho
GTPase is controlled by the Dbl family of guanine
nucleotide exchange factors (GEFs). Structures of several
GEFs bound to Rac-1 revealed a key groove on Rac-1 that
was responsible for the specificity of binding by GEFs such
as Trio and Tiam1. Moreover, a specific residue, Trp 56,
was identified as crucial for this interaction as a Rac1
mutant, W56F, lost the ability to interact with Trio and
Tiam1. Model peptides containing the Trp 56 residue were
also shown to inhibit the ability of GEF to activate Rac-1.
Based on these findings, a study using VLS was undertaken
to identify potential inhibitors of Rac-1 activation by
locating compounds that would bind into this groove and
make specific contacts with Trp 56.

With the structure of the Rac-1/Tiam complex as a
departure point, a putative binding pocket was constructed
from those residues surrounding Trp 56 (within 6.5 Å)
which included Lys 5, Val 7 and Ser 71, Fig. (21).

The NCI database, which contains coordinate files for
~140,000 small organic molecules was used as virtual
library. The UNITY program was used to screen the virtual
compound collection under conditions which permitted
flexibility in the ligands and the compounds were docked
into the putative binding site using FlexX. Consensus
scoring was used to determine and rank the top 100
candidate compounds. The investigators used a visual
inspection process to remove compounds that did not appear



Virtual Compound Libraries to Structures of Drug Targets Current Computer-Aided Drug Design, 2005, Vol. 1, No. 1     123

Fig. (21). Structure of Rac-1 (light gray) in complex with Tiam (dark gray).

to have an interaction with the crucial Trp 56 residue, a
process that reduced the top ranking compounds to 58.
Because of poor solubility or unavailability of some
compounds, only 15 of these compounds could be examined
in biological assay. Examination of the 15 candidates
revealed a single compound that was able to inhibit the Rac-
1/GEF I interaction in vitro, Fig. (22), NSC23766 (39)
inhibited Rac1-TrioN interaction in a dose-dependent manner
with an approximate IC50 value of 50 µM. The model of the
interaction between NSC23766 with Rac-1 indicated that the
compound binds in the desired cleft primarily through
hydrophobic interactions with a stacking interaction between
the central pyrimidine ring of the inhibitor and the indole
sidechain of Trp 56. No attempts to improve the potency of
(39) by further chemical modification were reported.
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Fig. (22). Single VLS hit for Rac-1/Tiam inhibitors.

p56 Lck

Huang et al. [111] utilized the high–resolution structure
of the SH2 domain of p56 Lck bound to a phosphopeptide
in combination with VLS to identify novel, non-peptidic
inhibitors of this Src family kinase. p56 Lck is
predominantly involved in the regulation of the immune
system and may be a valuable target for lymphomas and
rheumatoid arthritis. The initial inhibitor (pY-E-E-I) was
located during a screen of a phosphopeptide library against
the SH2 domain of Lck, a region that interacts with
phosphotyrosine residues in protein:protein interactions.
However the phosphate group is unstable in vitro and the
discovery of more druggable ligands against this site was
desired.

The X-ray structure showed that the phosphotyrosine and
isoleucine residues of the tetrapeptide each bound into two
separate cavities, referred to as the pY and pY+3 cavities.
These investigators chose to target the cavity that comprises
the pY+3 site for non-peptide inhibitors of p56 Lck.
Phenolphosphate (a model of phosphotyrosine) was
maintained in the pY site to prevent the docking of ligands
to this cavity. A 3D-database of 2,000,000 commercially
available compounds was prepared from a 2D building
program and the structures optimized with SYBYL6.4. The
structure of the Lck SH2 domain bound to the
phosphopeptide inhibitor was used for the screen. Docking
was carried out with DOCK and the energies of the ligand
complexes were evaluated. A series of further filters
developed by these investigators were utilized to compensate
for biasing in the DOCK protocol towards high molecular
weight compounds. 25,000 compounds (mean MW=345 Da
as compared to 475 Da) were selected after application of a
van der Waals attractive energy normalizing function and
taken through a second, more rigorous round of docking that
included energy minimization. From this second screen, two
sets of 1,000 compounds were selected for further analysis.

In the following round of selection, specific attention
was paid to the diversity of the compounds. Tanimoto
similarity indices generated with MOE were utilized to
generate clusters of dissimilar compounds. Each cluster of
compounds was analyzed for good candidates for biological
evaluation by applying Lipinski-type filters to the
compounds and removing those compounds that would be
likely to have poor ADME properties. Approximately 100
different clusters were generated and two candidates from
each cluster were chosen for biological assay. Final selection
revealed 288 unique compounds between the two sets, of
which 196 were still available from commercial sources.

Biological assay of the 196 compound sublibrary at a
concentration of 100 µM against p56 Lck produced a hit rate
of 17% which corresponded to 34 active lead compounds.
Flourescence titration experiments subsequently showed that
four of these compounds, Fig. (23), directly bound to the
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Fig. (23). a) Phosphopeptide lead for VLS b) Binders of the p56 Lck SH2 domain.

SH2 domain of Lck with KD values in the low micromolar
range.

This study nicely illustrates a family-based approach to
maximizing diversity. Rather than looking only at the top-
scoring compounds, clustering of a wide range of potential
actives allowed a sampling of a much greater chemical
diversity (41-44). This approach could be highly useful in a
medicinal chemistry program as it is advantageous to pursue
multiple lead scaffolds in parallel to provide adequate
backup compounds against late-stage failure of clinical
candidates.

SUMMARY

These case studies, described above, provide compelling
evidence that VLS can identify lead compounds in a cost
efficient and rapid manner. Recent work suggests that lead
compounds can be found for a wide array of biological
targets such as enzyme catalytic sites, ligand-binding
domains and even protein:protein interactions.

It is evident that a range of challenges remain in the field
and that progress towards removing these challenges will
serve to increase the rate at which leads are identified, the
initial potency of the leads and the quality of those leads as
true drug candidates. Three challenges that emerge are: (1)
the need for more purposefully designed virtual libraries, (2)
the need to consider ligand and target flexibility in docking,
and (3) the need to develop accurate scoring methods
compatible with a reasonable computational time. The need
for more purposefully designed libraries is highlighted in the

fact that the majority of recent studies have relied on virtual
libraries derived from existing compound collections such as
ACD, NCI or historical collections. These libraries are
attractive because the identified leads are seemingly available
through purchasing rather than synthesis. However, many of
these cases reveal that it can be difficult to actually obtain
the identified hits. Clearly, the purposeful design of new
virtual libraries that take into account diversity and lead-
likeness, as well as synthetic accessibility and amenability
to further elaboration will have a major impact on the use of
VLS in drug discovery. The second challenge, considering
the flexibility of the ligand and the target without generating
a combinatorial explosion, will be necessary to produce a
more accurate representation of the bound structure for
subsequent scoring. The case study describing the interaction
between didansyltyrosine and thymidylate synthase provides
a striking example of the need to consider flexibility in
docking. Finally, although several accurate scoring
algorithms have been developed to fully evaluate the
interaction between a ligand and its receptor, these
algorithms are too computationally demanding for large
virtual libraries containing hundreds of thousands of
compounds. Further development to increase the accuracy
and speed of minimal scoring algorithms will be needed to
better correlate the computational and biological ranking.

Despite these important challenges, there have been many
successful VLS studies. One of the important features
revealed in these VLS studies is that a diversity of hits can
be found for a single target. From a medicinal chemistry
perspective, the ability to develop multiple families of leads
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in parallel provides a margin of safety against late stage
failure in the drug development process. The p56 Lck case
study nicely illustrates how the leads were filtered to bias for
a diverse collection. It is also evident from an analysis of the
case studies that micromolar inhibitors can be identified in
the virtual library and that it is rare to identify
submicromolar hits. However, lead optimization either
through traditional medicinal chemistry (for example the
CDK inhibitors) or using focused libraries of an identified
scaffold (for example cathepsin D inhibitors) can translate
these micromolar hits to low nanomolar leads. Teague [90]
recommends a strategy of selecting low molecular weight
hits (MW≤350 Da) such that high affinity leads derived by
elaboration of the hit maintain good drug-like properties. In
terms of the macromolecule in VLS, a number of case
studies including NK-1, TR and RAR, have shown that
targets derived from homology models, the structural
method that relies on the least amount of experimental data,
functions well in VLS studies.

One of the most important conclusions from these
studies is that the use of focused libraries that incorporate
information about an initial scaffold yield improved hit rates
relative to random screening. The study describing cathepsin
D highlights that if focused libraries are used, significantly
smaller libraries will be needed for hit identification and that
the potency of the hits will be 3-4 times greater than those
from a diverse library. The information about an initial
scaffold can be as simple as a single functional (anchor)
group. This strategy was used to discover potent inhibitors
of aldose reductase and carbonic anhydrase. In another
application of focused libraries, knowledge of inhibitors of
related kinases was nicely used to filter virtual libraries of
potential Chk-1 inhibitors. Focused libraries have also
proven highly effective in lead optimization. This is nicely
illustrated in the development of nanomolar inhibitors of
CDK and TR. In summary the application of structure-based
library design with a team encompassing expertise in
synthesis, structure and computation will evolve VLS into a
premier strategy in drug discovery.

ABBREVIATIONS

VLS = Virtual library screening

HTS = High-throughput screening

TOS = Target-oriented synthesis

DOS = Diversity-oriented synthesis

ACD = Available chemicals directory

NCI = National Cancer Institute

ADME = Absorption, distribution, metabolism and 
excretion

NMR = Nuclear magnetic resonance

RCSB = Research collaboratory for structural 
bioinformatics

GPCR = G-protein coupled receptor

SAR = Structure activity relationships

DHFR = Dihydrofolate reductase

TS = Thymidylate synthase

dUMP = Deoxyuridine monophosphate

PA = Protective antigen

EF = Edema factor

LF = Lethal factor

CDK = Cyclin dependent kinase

hCAII = Human carbonic anhydrase

dTMP = Deoxythymidine monophosphate

DDT = Didansyl tyrosine

MIC = Minimum inhibitory concentration

TR = Thyroid receptor

LBD = Ligand-binding domain

RAR = Retinoic acid receptor

GEF = Guaninenucleotide exchange factor
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