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Pressure is mounting on the pharmaceutical industry to reduce both the cost of drugs and the time to market. The 
large number of targets made available in the last decade has created a new area for technologies that can rapidly 
identify quality lead candidates. Virtual screening is one such technology that is gaining increasing importance in 
the drug discovery process. Virtual screening is a reliable and inexpensive method currently being employed as a 
complementary approach to high-throughput screening. Virtual screening can be adopted irrespective of the 
structural information of the target receptor. In the absence of structural data, virtual screening using 
pharmacophore-based search is a major in silico tool. However, when the structure of the receptor is available, 
virtual screening using both pharmacophore-based and docking techniques can be employed. Both of these methods 
can be synergistically integrated to improve the drug design and development process. In this article, we provide an 
overview of methods for virtual screening – in particular, docking and pharmacophore-based – along with commercial 
algorithms implementing these methods, and a successful example in this arena. Further, we enumerate the potential 
for patenting such kind of studies. 

The pharmaceutical industry is under ever increasing compound or a set of compounds that are known to bind 
pressure to increase its success rate in bringing drugs to to the desired target, and use this knowledge to identify 
the market. Current efforts within the industry are directed other compounds with similar properties in databases. This 
at reducing the hit-to-drug timeline and increasing the is usually achieved by similarity and substructure 
number of quality candidate drugs that make the transition searching6 or pharmacophore matching7

from discovery to the clinical phase. Enormous advances in matching8. However, when the structure of the receptor 
genomics have resulted in large increase in the number of is available, both pharmacophore-based and docking 
potential therapeutic targets. This growth in potential targets techniques can be employed. The latter method involves 
has increased the demand for reliable target validation, as positioning each ligand into the binding site of the target, 
well as technologies that can identify rapidly several quality thus proposing a binding mode and affinity for each 
lead candidates1-4. Virtual screening (VS) technology is compound in the database. This information is then used 
gaining increasing importance in the discovery process to rank the compounds in order to select and 

or 3D shape 

because it is a reliable and inexpensive method for 
identifying lead molecules5. It is seen as a complementary 
approach to high-throughput screening (HTS) and when 
coupled with structural biology, it enhances the success 
rate of identification of leads. Further, the advances in 
computational techniques have enabled VS to make a deep 
impact on the drug discovery process. 

The tools for carrying out VS can be broadly 
categorized as receptor-based or ligand-based. The 
ligand-based methods use information provided by a 
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experimentally test a small subset of hits for biological 
activity. In particular, both these methods can be 
synergistically integrated to improve the drug design and 
development process. 

This article is intended to provide an overview of 
methods, in particular docking and pharmacophore 
searching, along with commercial and non-commercial 
software for in silico screening of ligand databases and 
some successful examples in this arena. 

DATABASE STRUCTURE 

The primary requirement for performing VS, by either 
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docking or by pharmacophore search method, is the 
availability of a database (DB) of ligand molecules. A 
corporate database or one available from commercial 
vendors such as Available Chemicals Directory (ACD)9 

or Cambridge Structural Database (CSD)10 can be 
employed for this purpose. Additionally, a database of 
known reagents and compounds which are readily 
synthesizable can be used for VS after primary filtration 
for ‘drug-like’ properties2 such as variation of Lipinski’s 
rule-of-five11, number of rotatable bonds or the polar 
surface area. A database could also be filtered to remove 

theoretical method such as comparative modelling). The 
3D structure of the receptor is corrected and transformed 
into an appropriate format depending on the 
requirements of the docking program. The docking 
method then samples the conformational space of the 
binding site and scores each possible ligand pose, which 
is then taken as the predicted binding mode of that 
ligand. The ligand and receptor flexibility is an important 
aspect in VS because the conformations of the ligand, as 
well as the receptor binding site residues, might be 
different from their conformation in the bound state. The 

method. 

compounds with specific substructures associated with aspects of ligand and receptor flexibility are tackled to 
poor chemical stability or toxicity. Also, physically some extent in some of the docking programs (flexible 
relevant ionization and tautomeric states should be search) or by pre-computing a DB of several conformers 
assigned to compounds in the DB. It is prudent to use all of each compound to be screened, as mentioned in the 
the relevant tautomers because there is no way of previous section. A majority of the docking programs 
knowing a priori which tautomer is most likely to bind to explore ligand flexibility through a variety of algorithms. 

One way to explore the ligand’s conformational space is 
to use Monte Carlo or simulated annealing methods13,14

For the generation of the 3D structure of a molecule but these are often time consuming and not suitable for 
during compilation of a database, one can use programs large-scale VS. The Genetic Optimization of Ligand 
such as Corina12 (Molecular Networks GmbH, http:// Docking (GOLD15 , Cambridge Crystallographic Data 
www.mol-net.com), Concord and Confort (Tripos Inc., Center, UK; http://www.ccdc.cam.ac.uk) and the most 
USA) or Converter (Accelrys Inc., USA). Sometimes it is recent version of AutoDock16 (Scripps Research Institute, 
necessary to assign partial charges to compounds in the USA) use genetic algorithm-based approaches to 
database depending on the requirement of the 3D search generate and select the best conformations of a ligand. 

Flex-X17 (Tripos Inc., USA) has a fragment-based 
approach and uses a set of low energy torsion angles 

Another issue in VS is the handling of ligand flexibility. derived from the CSD for each single bond. GOLD also 
Conformational flexibility can be introduced in VS either enables the customization of torsional energy 
through the database or the query, or during the search contributions via a statistical analysis of torsion angle 
process. Handling conformational flexibility in the database distributions observed in CSD. The program Glide 
involves storage of multiple conformations of each ligand (Schrödinger Inc., USA; http://www.schrödinger.com) 
in the DB. However, this is a practically intractable treats ligand flexibility by an exhaustive enumeration of 
solution because the number of conformations of a ligand the rotamer states for each rotatable bond coupled to a 
increases with an increase in the number of rotatable heuristic screen that rapidly eliminates conformations 
bonds. A small drug-like molecule with four rotatable deemed unsuitable for binding to a receptor. 

the receptor. 
,


bonds, if scanned at a resolution of 120° for each dihedral 
angle, yields [360/120]4 = 81 conformations, and there is 
no firm basis for the ones to be included in the DB. A 
better solution is the hybrid approach. The combination 
of multi-conformer database and flexible searching 
provides an efficient and effective route. This hybrid 
approach is employed in the Catalyst BEST search 
method (Accelrys Inc., USA). 

VS USING DOCKING 

The docking process involves the simulation of molecular 
recognition events using the 3D structure of the receptor 
(obtained by X-ray crystallography or NMR or a 

Majority of the docking methods treat the receptor as a 
rigid entity, which is an inaccurate but necessary 
approximation in order to limit the complexity and 
consequently the computational cost required to 
accurately sample the flexibility of the binding site. 
Researchers have used an ensemble of protein structures 
to incorporate protein flexibility. This ensemble of protein 
structures can be obtained by simulated annealing of the 
binding site or by use of several high resolution 
structures of the same target bound to different ligands or 
in apo form, or by use of an ensemble of NMR 
structures, or by use of multiple homology models. The 
programs AutoDock16 and Flex-E18 (Tripos Inc., USA) 
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incorporate protein mobility through rotamer libraries for 
flexible side chains and by use of an ensemble of protein 
structures to generate Boltzman-weighted grids with which 
the docking function is generated19. 

The next important step that determines the success of 
the docking process is ranking the quality of different 
poses of the same molecule and then with respect to 
other molecules in the DB (Scoring). There are several 
scoring functions20 available to achieve this task. Force 
field-based scoring functions such as AMBER21, 
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CHARMm22 and CVFF23 are based on atomic force fields 
in which single-point intermolecular interaction energy 
between the ligand and the receptor is used as a score 
for the given pose. Empirical scoring functions are based 
on an additive approximation of physicochemical 
properties such as H-bonding, hydrophobic interactions, 
entropic changes and metal-ion interactions, if present. 
Experimental binding energies of known ligand-receptor 
complexes are used to derive the coefficients of each 
term explaining a binding event. Therefore, the 
efficiency of these scoring functions depends on the 
variety and number of ligand-receptor complexes used to 
derive the scoring function and its validation on a large 
set of ligand-receptor complexes in the PDB. GOLD24 , 
FlexX17, SCORE25, VALIDATE26, ChemScore27, Ludi28 

(Accelrys Inc., USA) and PLP29 use an empirical scoring 
function to rank different poses. The GOLD scoring 
function has been validated on a large data set30 and uses 
a genetic algorithm to rank the poses, and it is 
considered to be a reliable docking and scoring algorithm 
for VS. Another class of scoring functions, knowledge-
based, is derived from the structures of ligand-receptor 
complexes using statistical mechanics. In contrast to 
empirical scoring functions, they do not require binding 
affinity data of ligand-receptor complexes and so are free 
to use information in ligand-receptor complexes deposited 

of several scoring functions such as PLP, ChemScore and 
Dock found little or no correlation between predicted and 
experimental binding affinities. Therefore, it becomes 
crucial to use a post-analysis strategy to minimize the false 
positives in the selection list. In consensus scoring 
strategy36-38, a docking function is used to generate top-
ranked poses and then multiple scoring functions are 
used to score these poses. Then, only the top-ranked 
compounds common to each scoring method are chosen 
for biological evaluation. It has been observed that almost 
all docking methods are able to identify the correct 
binding pose39 but usually cannot rank it as the top-
ranked binding pose for the ligand. Therefore, it is 
prudent to use consensus scoring of multiple poses rather 
than a top-ranked single pose. 

Based on the above known limitations, it is strongly 
advisable to use a set of ligands with known binding 

Fig. 1: Flow chart of the virtual screening process using docking 
method 
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in the public or proprietary databases. Further, such 
scoring functions are expected to be less biased and 
more readily transferable to systems not included in the 
development of the scoring function. PMF31, Bleep32, 
SMOG33 and DrugScore34 (Cambridge Crystallographic 
Data Center, CCDC, UK) are some examples of 
knowledge-based scoring functions. A flow chart of the 
steps involved in VS by docking method is depicted in 
fig. 1. 

At the end of the docking process, a set of best 
compounds is selected. It is not advisable to select the 
compounds merely on the basis of scoring or ‘best 
ranking’. A recent study35 that evaluated the performance 

modes and affinities, and multiple docking and scoring 
(consensus) algorithms, to calibrate the docking 
methodology for the target under study before 
undertaking VS of large databases. 

VS USING PHARMACOPHORE 
METHODS 

The docking methodologies discussed above help in 
screening databases only when the 3D structure of the 
target receptor is available. In the early phase of drug 
discovery, or in cases where the structure elucidation is 
beyond the capabilities of present day techniques, the 
docking technique cannot be used. A pharmacophore-based 
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search of databases can be carried out in absence of the 
receptor structure with the help of the information 
available from a set of ligands binding preferentially to 
the given receptor. The credit for first conceiving the 
concept of the pharmacophore goes to Paul Ehrlich, who 
devised a way (in early 1900s) to develop dyes through 
chromophores (i.e., the part of a molecule responsible for 
imparting colour)40. A good review of the evolution and 
history of the pharmacophore concept has been 
published by Peter Gund41, who is also the author of the 
modern definition of a pharmacophore - “a set of 

elsewhere41. For timely reviews in the field, the reader 
may follow other references64-68. 

Pharmacophore modelling provides a useful framework 
for better understanding of the existing data and can be 
used as a predictive tool in the design of compounds 
with improved potency, selectivity and/or 
pharmacokinetic properties. Pharmacophore models are 
generated by analyzing structure-activity-relationships 
and mapping common structural features of active 
analogues. The pharmacophore can be identified by 
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structural features in a molecule that is recognized at a 
receptor site and is responsible for that molecule’s 
biological activity”42,43. The concept could not achieve its 
full utilization until the development of 3D database 
searching software in 1990. MOLPAT44, the first 
computer program, was developed at Princeton University 
in 1974 by Gund, Wipke and Langridge to recognize 
pharmacophore patterns. The demand for 3D searching 
software reached a critical level with the development of 
rapid 3D structure generation programs such as 
CONCORD45, CORINA12,46, AIMB47 and WIZARD48 . 

(developed at Abbott and later 
commercialized by Daylight) and 3D-Search50 

(developed at Lederle) were developed by 
pharmaceutical companies, whereas academic and 
government institutions were responsible for CAST-3D51 

(Chemical Abstract Services), DOCK52 (University of 
California at San Francisco) and CAVEAT53 (University 
of California at Berkley). The first commercial 3D 
searching system, MACCS-3D54, was developed by 
Güner et al. and was released in December of 1989. 
During the next 4 y, all of the technology that is 
available today was developed - ChemDBS-3D55 

(Accelrys Inc., USA), UNITY56 (Tripos Inc., USA) and 
Catalyst57 (Accelrys Inc., USA). The critical demand for 
the pharmacophore recognition software arose when the 

direct method (using a receptor-ligand complex) or by 
indirect method (using only a collection of ligands that 
have experimentally been observed to interact with a 
given receptor). However, direct methods are becoming 
extremely important because of the increase in the rate 
at which protein structures are being determined. A 
flow chart of steps involved in VS by the 
pharmacophore method is depicted in fig. 2. 
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Pattern 
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Score & Rank 

Pharmacophore Candidate Pharmacophore 
Generation 

Feature 
Extraction 

Pharmacophore-based Query 

Database 
Searching 

Proposed LEADS 

Biological Evaluation 

Prepared 

Database 

Virtual Screening 

ALADDIN49

above-mentioned 3D searching technologies were made 
easily available. Though these 3D-search software had 
inbuilt query-generation tools, specialized 
pharmacophore generation software were also being 
developed. Most notable among them are DISCO58 by 
Martin et al. (Tripos Inc., USA), HipHop59 by Barnum et 
al. (Accelrys Inc., USA) and GASP60 by Jones and 
Willett (Tripos Inc., USA). Meanwhile, predictive 
pharmacophore models such as CoMFA61 by Cramer et 
al. (Tripos Inc., USA), Apex-3D62 by Golander and 
Vorpagel (Accelrys Inc., USA) and HypoGen63 by Teig 
et al. (Accelrys Inc., USA) were being developed. 
Detailed usage and validation of all of the Fig. 2: Flow chart of the virtual screening process using 
pharmacophore development software are covered pharmacophore method 
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Pharmacophore generation: 
Pharmacophore generation starts with the selection of a 
set of ligands for which the pharmacophore model is to 
be constructed. The type of ligand molecules, the size of 
the dataset and its diversity have a great impact on the 
resulting pharmacophore model67. The Carnell-Smith 
method69, RAPID70 and HipHop59,64,71 assume that ligands 
have the same activity and thus do not consider activity 
data. The information of inactive ligands can also be used 
to indicate structural features that significantly decrease 
the activity. The programs that use information of inactive 

combined to form a representation of the whole structure. 
The RAPID method represents ligand structures as a set 
of labelled points in three-dimensional space, where each 
point is associated with a feature70. Another approach by 
Takahashi et al.76 represents a ligand structure through a 
labelled graph, with nodes representing the features and 
the edges representing the relations. Different methods that 
use this representation are given in the literature77. In 
another approach, a ligand structure is considered a set of 
labelled points, together with the associated interpoint 
distances77. This type of representation is orientation 

ligands are CLEW72 and the current version of DISCO58. independent, in contrast to the 3D point-set representation. 
Pharmacophore models can also be used to predict the 
activity of unknown compounds. For deriving such The features extracted from different ligand molecules 
models, HypoGen63 utilizes a large enough set of diverse are matched and pharmacophore candidates are 
compounds (about 18-30) with different activity levels (4-5 proposed. This is called pattern identification. A pattern or 
orders of magnitude). Most of the currently available configuration is a set of relative locations in 3D space, 
methods such as HipHop, HypoGen, MPHIL73 and each associated with a feature. A ligand is said to match a 
RAPID are designed to handle small (less than 100 pattern if it possesses a set of features and a 
ligands) data sets. Other methods use larger data sets as conformation such that the features can be superimposed 
input but convert them into a smaller one by sorting the with the corresponding locations. The most popular 
activities of the ligands, depending on a user-specified approach to define a pattern is to find the maximal 
cut-off. Lastly, one should remember that though the common substructure (MCS). The methods that have 
dataset should be as diverse as possible to get an adopted this approach are DISCO58, RAPID70 

accurate pharmacophore model, very different ligands GAMMA78 and GASP60. This approach assumes that a 
may bind at different binding sites, resulting in a common pharmacophore is responsible for the observed 
misleading pharmacophore model74. activity. This is an inaccurate assumption in the MCS 

approach and can be overcome by relaxing the 
In the next step, the features relevant to the requirements (“Relax MCS” approach) that all input 
pharmacophore model are extracted from the input ligands possess all the features. This philosophy is used 
ligands (feature extraction). Features can be defined in the MPHIL74 method. 
depending on topology (phenyl ring and carbonyl 
group), function (H-bond donor/acceptor, acid, base, Algorithms for pattern identification have also been 
aromatic ring and hydrophobic group) and atom (3D developed. (For a detailed description, see reference 67). 
position of an atom and its type)67. Both topology-based The Clique detection algorithm79-81 has been implemented 
and function-based features have some drawbacks. For in DISCO and MPHIL methods. Clique detection has its 
example, hydroxyl oxygen can be classified as both an H- origin in graph theory. A clique is a subgraph in which 

,


bond donor and acceptor. A simple way to represent a 
functional group is by its centre. The centre of an acid, 
base, H-bond donor/acceptor is usually defined as the 
position of an actual atom. For a hydrophobic region or 
an aromatic ring, the centre is defined as the centroid of 
the group. Furthermore, a vector representation is more 
accurate than a point representation since it imposes an 
additional constraint on bond directionality between the 
ligand feature and its complementary feature on the 
receptor71,75. In addition, a hydrophobic group can be 
represented by a sphere and an aromatic ring by a plane 
and its normal. 

From each ligand structure, the selected features are 

every node is connected to every other node. The 
Clique detection algorithm finds the largest clique in a 
reference graph which is also present in every other 
graph in the set. HipHop and SCAMPI use an exhaustive 
search algorithm in which the search for a pattern starts 
with small sets of features and extends until no larger 
common pattern exists. HypoGen uses a similar approach 
but also incorporates activity information into the 
pharmacophore derivation process. This is done in three 
steps: the constructive stage identifies pharmacophore 
candidates that are common among the set of most active 
ligands, followed by the subtractive stage in which those 
pharmacophore candidates identified in the constructive 
stage and also present in more than half of the least 
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active ligands are removed; and the last step of 
optimization attempts to improve the score of the 
pharmacophore candidates that pass the subtractive stage 
by simulated annealing67. GASP60 and GAMMA78 are 
based on the genetic algorithm82 and also perform a 
conformational search as part of the GA run. Thus, 
molecular flexibility is simulated by generating multiple 
conformations of the given ligand followed by an 
exploration of different ways to align the molecules and 
to identify the pharmacophore pattern. 

performed to find novel scaffolds of DNA gyrase 
inhibitors83. The ACD database of 350,000 compounds 
and a portion of the Roche compound inventory (RCI) 
were screened to obtain 150 weak inhibitors. These novel 
DNA gyrase inhibitors binding to the ATP-binding site 
have seven structurally different scaffolds. The 
optimization of the indazole scaffold provided a DNA 
gyrase inhibitor which was 10 times more potent than 
novobiocin. 

Sterol metabolism: 
In the last step of pharmacophore generation, candidates Laggner and colleagues84 have reported pharmacophore 
are scored and ranked. A lower score indicates a greater models for three protein targets involved in sterol 
possibility that the model is a result of chance correlation. metabolism. Twenty-three structurally diverse molecules 
A detailed description of scoring methods implemented in with binding affinity data for EBP (emopamil binding 
techniques that relax the MCS requirements, and scoring protein), ERG2 (fungal counterpart of EBP) and the 
in genetic algorithms like GASP and GAMMA is given in sigma-1 receptor were used in the study to derive a 
the literature59,67. pharmacophore model with the HypoGen module of 

Catalyst. These three enzymes of sterol metabolism share 
As mentioned in the introductory section, VS by high affinity for various structurally diverse compounds. 
pharmacophore searching is more efficient when Three pharmacophore models with one positive ionizable 
structural knowledge of the target receptor is available. group and four hydrophobic features in common but with 
The receptor-based approach for pharmacophore different spatial arrangements were derived and validated. 
generation involves analyzing features of the active site The study showed that the hydrogen-bonding 
and the spatial relationship among them, and then an interactions are not required for high-affinity inhibitor 
active image of this is used to construct the binding. The models were subsequently used to search 
pharmacophore model. Such an operation gives rise to a the database [such as World Drug Index (WDI), Kyoto 
large number of features, and it is necessary to Encyclopedia of Genes and Genomes (KEGG) and 
determine which of these are actually parts of the COMPOUND database]. In virtual screening, the drugs 
pharmacophore. The method begins with a 3D structure that were reported previously to bind to one or several 
of the receptor (usually in PDB format) and a set of of these proteins were retrieved along with 11 new hits, 
ligands with known activity. Using the information of the which were then tested experimentally. Inhibitors with 
active site residues (from biochemical or structural nanomolar binding affinity were discovered. 
studies), a program such as Ludi25,28 (Accelrys Inc., USA) 
generates an interaction map which is a complement of CAN ONE PROTECT KNOWLEDGE-
the receptor-binding site. The ligands with known activity BASED CONCEPTS? 
are used to identify the functional features such as H-
bond donors/acceptors and lipophilic groups from the 
interaction map in the active site. Often it is necessary to 
filter/limit the number of features since queries with 
multiple features may fail to retrieve any hits from the 
database. Therefore, 3D queries composed of fewer 
features are generated by considering all possible 
combinations. Catalyst57 uses these queries to search the 
ligand database. 

SUCCESSFUL APPLICATION OF VS 
METHODS 

DNA gyrase inhibitors: 
A 3D database search using Ludi and Catalyst was 

The answer is now YES. Though there are no patents 
yet of QSAR studies, the pharmacophores are being 
protected under Intellectual Property Rights. The credit 
for the first application of patenting such a knowledge-
based concept goes to Biogen. In 1998, Biogen applied 
for a world patent of pharmacophores (WO 98/04913) in 
which all compounds derived from a 3D database search 
of the described pharmacophore were included. Peptor 
Ltd. filed a patent (US 6,343,257) that involves the 
development of a pharmacophore, its use in VS and use 
of the hits to design new compounds. Another patent of 
pharmacophores covers Hepatitis C NS3 protease 
inhibitors. This patent (WO 98/46630) claims all 
compounds that fit the pharmacophore model that in turn 
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represents the structure for inhibitors of Hepatitis C NS3 
protease. Another patent filed for pharmacophores is US 
2002/0013372 for the identification of CYP2D6 inhibitors. 
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