fbpx


Self Paced

Nano materials in Medicine: Shaping the Future of Implant Technology

Transforming Healthcare: Mastering Nanomaterials for Revolutionary Implant Technology

MODE
Online/ e-LMS
TYPE
Self Paced
LEVEL
Moderate
DURATION
1 Month

About

This program delves into the fascinating world of nanotechnology and its transformative impact on medical implants. Participants will explore the properties of nanomaterials, their integration into medical devices, and the future trends shaping this cutting-edge field.

Aim

The aim of this program is to provide a thorough understanding of nanomaterials in medicine, focusing on their application in implant technology. It seeks to equip participants with the knowledge to innovate and improve medical implants, enhancing patient outcomes.

Program Objectives

  • Understand the Fundamentals of Nanotechnology and Nanomaterials: Define and explain the core concepts of nanotechnology and nanomaterials, providing participants with a foundational understanding of their characteristics and applications.
  • Explore the Unique Features of Nanomaterials: Investigate the distinctive properties that make nanomaterials special, focusing on their behavior at the nanoscale and how these properties differ from bulk materials.
  • Examine Altered Properties of Nanomaterials and Their Underlying Mechanisms: Delve into the reasons behind the altered properties of nanomaterials, emphasizing the mechanisms that drive these changes and their implications in various applications.
  • Learn Techniques to Control Surface Energy Using Nanomaterials: Provide participants with practical knowledge on how to manipulate surface energy through nanomaterials, enabling them to understand and control interactions with biological systems.
  • Identify Three Design Criteria for Improved Implant Performance: Define and elaborate on three essential design criteria for incorporating nanomaterials to enhance the performance of medical implants, considering both theoretical principles and practical applications.
  • Gain Insights into Predictive Equations for Nanomaterial-Enhanced Implant Performance: Familiarize participants with predictive equations and modeling techniques that guide the selection and application of nanomaterials, facilitating informed decision-making in implant design.
  • Comprehend Water Interactions with Nanomaterials: Explore the interactions between nanomaterials and water, understanding how these interactions influence the performance and biocompatibility of medical implants.
  • Investigate Protein Interactions with Nanomaterials: Examine the interactions between nanomaterials and proteins, elucidating the implications for implant biocompatibility and tissue responses.
  • Understand Cellular Interactions with Nanomaterials: Explore the ways in which cells interact with nanomaterials, emphasizing the impact on tissue integration around implants and overall biocompatibility.

Program Structure

The program is structured into modules covering:

  • Introduction to Nanotechnology and Nanomaterials
  • Nanomaterials in Medicine
  • Implant Technology and Nanomaterials
  • Case Studies and Research
  • Future Trends in Nanotechnology

Participant’s Eligibility

This program is designed for:

  • Medical professionals and researchers.
  • Students in biomedical engineering and related fields.
  • Industry professionals seeking to enhance their knowledge in nanotechnology.

Program Outcomes

  • Foundational Nanotechnology Knowledge: Participants will acquire a comprehensive understanding of nanotechnology and nanomaterials, laying the groundwork for their applications in medical implants.
  • Unique Characteristics of Nanomaterials: Exploring the special properties of nanomaterials, participants will grasp the distinct features that make them suitable for enhancing implant performance.
  • Understanding Interactions with the Body: Participants will explore short and long-term interactions of implants with water, proteins, cells, the inflammatory system, and blood coagulation, enhancing their comprehension of implant biocompatibility.
  • Clinical Evidence in Hard and Soft Tissue Applications: The program will provide clinical evidence supporting the use of nanomaterials in orthopedic hard tissue applications, as well as various soft tissue applications, showcasing their efficacy and potential.
  • Exploration of Anti-bacterial, Anti-viral, and Anti-inflammatory Properties: Participants will gain insights into how nanomaterials exhibit anti-bacterial, anti-viral, and anti-inflammatory properties, understanding their potential in enhancing implant safety.
  • Future Directions in Nanotechnology: The program will conclude with an exploration of future directions in nanotechnology, including implantable sensors, artificial intelligence, digital health, and picomedicine, providing participants with a forward-looking perspective on the evolving landscape of medical implants.

Mentor Profile

Fee Structure

Standard Fee:           INR 4,998           USD 110

Discounted Fee:       INR 2499             USD 55

We are excited to announce that we now accept payments in over 20 global currencies, in addition to USD. Check out our list to see if your preferred currency is supported. Enjoy the convenience and flexibility of paying in your local currency!

List of Currencies

Batches

Spring
Summer

Autumn
Winter

FOR QUERIES, FEEDBACK OR ASSISTANCE

Contact Learner Support

Best of support with us

Phone (For Voice Call)


WhatsApp (For Call & Chat)

Key Takeaways

Program Deliverables

  • Access to e-LMS
  • Real Time Project for Dissertation
  • Project Guidance
  • Paper Publication Opportunity
  • Self Assessment
  • Final Examination
  • e-Certification
  • e-Marksheet

Future Career Prospects

Participants can pursue careers in:

  • Biomedical research and development.
  • Medical device manufacturing.
  • Healthcare technology innovation.
  • Academic and industrial research

Enter the Hall of Fame!

Take your research to the next level!

Publication Opportunity
Potentially earn a place in our coveted Hall of Fame.

Centre of Excellence
Join the esteemed Centre of Excellence.

Networking and Learning
Network with industry leaders, access ongoing learning opportunities.

Hall of Fame
Get your groundbreaking work considered for publication in a prestigious Open Access Journal (worth ₹20,000/USD 1,000).

Achieve excellence and solidify your reputation among the elite!


×

Related Courses

program_img

TensorFlow and Keras Basics

Improving Implants: The Nano Effect, Nanomaterials in Medicine: Shaping the Future of Implant Technology, Nano materials in Medicine: Shaping the Future of Implant Technology

Dear teacher, thank you for the excellent presentations.
Your presentations and optimism related to More nanomedicine make me look optimistically at the future of medicine.

Cristin Coman : 2024-05-18 at 3:10 pm

View All Feedbacks

Still have any Query?