fbpx


Mentor Based

Reinforcement Learning

Master the Future of AI with Advanced Reinforcement Learning Techniques.

Enroll now for early access of e-LMS

MODE
Online/ e-LMS
TYPE
Mentor Based
LEVEL
Advanced
DURATION
4 Weeks

About

This Program is designed to provide a comprehensive understanding of reinforcement learning (RL) and its applications. Participants will explore the foundational principles of RL, including Markov decision processes and dynamic programming. The course will delve into advanced topics such as deep Q-learning, policy gradients, and proximal policy optimization (PPO). By the end of the course, participants will be proficient in using key RL libraries and frameworks, preparing them for advanced studies or careers in reinforcement learning and AI.

Program Objectives

  • Understand and apply foundational reinforcement learning concepts.
  • Explore and implement Markov decision processes (MDP) and dynamic programming techniques.
  • Develop and optimize RL algorithms including deep Q-learning, policy gradients, and PPO.
  • Utilize Monte Carlo methods and temporal-difference learning for model training.
  • Gain hands-on experience with deep reinforcement learning using TensorFlow and PyTorch.
  • Apply RL techniques to solve real-world problems and build advanced AI applications.
  • Complete projects that demonstrate practical RL skills and knowledge.
  • Prepare for advanced roles in reinforcement learning and AI through comprehensive training and hands-on practice.

Program Structure

Introduction to Reinforcement Learning:

  • Overview of Reinforcement Learning.
  • Key Concepts and Terminologies.
  • Applications and Use Cases.

Markov Decision Processes (MDP):

  • Understanding MDPs.
  • States, Actions, and Rewards.
  • Policy and Value Functions.

Dynamic Programming:

  • Bellman Equations.
  • Value Iteration.
  • Policy Iteration.

Monte Carlo Methods:

  • Monte Carlo Prediction.
  • Monte Carlo Control.
  • Off-Policy Methods.

Temporal-Difference Learning:

  • TD Prediction.
  • SARSA (State-Action-Reward-State-Action).
  • Q-Learning.

Deep Reinforcement Learning:

  • Deep Q-Networks (DQN).
  • Double DQN and Dueling DQN.
  • Policy Gradients and Actor-Critic Methods.
  • Proximal Policy Optimization (PPO).

Advanced Topics:

  • Multi-Agent Reinforcement Learning.
  • Hierarchical Reinforcement Learning.
  • Inverse Reinforcement Learning.
  • Safety and Ethics in RL.

Practical Implementation:

  • Using OpenAI Gym for Simulation Environments.
  • Implementing RL Algorithms with TensorFlow and PyTorch.
  • Building and Deploying RL Models.

Participant’s Eligibility

  • Senior undergraduates and graduate students in Computer Science and related fields.
  • Professionals in IT, data science, and software development looking to enhance their RL skills.

Program Outcomes

  • Develop a strong understanding of reinforcement learning principles and techniques.
  • Gain proficiency in Markov decision processes and dynamic programming.
  • Implement and optimize RL algorithms such as deep Q-learning, policy gradients, and PPO.
  • Master the use of key RL libraries and frameworks including OpenAI Gym, TensorFlow, and PyTorch.
  • Apply RL concepts to real-world projects and scenarios.
  • Enhance Python programming skills for advanced RL tasks.
  • Complete practical coding exercises and projects demonstrating RL expertise.
  • Earn a certificate of completion recognized by industry leaders.

Fee Structure

Fee:       INR 10,999             USD 164

We are excited to announce that we now accept payments in over 20 global currencies, in addition to USD. Check out our list to see if your preferred currency is supported. Enjoy the convenience and flexibility of paying in your local currency!

List of Currencies

Batches

Spring
Summer

Live

Autumn
Winter

FOR QUERIES, FEEDBACK OR ASSISTANCE

Contact Learner Support

Best of support with us

Phone (For Voice Call)


WhatsApp (For Call & Chat)

Key Takeaways

Program Deliverables

  • Access to e-LMS
  • Real Time Project for Dissertation
  • Project Guidance
  • Paper Publication Opportunity
  • Self Assessment
  • Final Examination
  • e-Certification
  • e-Marksheet

Future Career Prospects

  • Reinforcement Learning Engineer: Develop and implement RL algorithms and models.
  • Data Scientist: Apply RL techniques to optimize decision-making and improve data-driven solutions.
  • AI Research Scientist: Conduct research to advance the field of reinforcement learning and AI.
  • Machine Learning Engineer: Design and optimize machine learning models using RL principles.
  • Robotics Engineer: Utilize RL to improve robotics and automation systems.
  • Game Developer: Implement RL algorithms for game AI and simulation environments.

Enter the Hall of Fame!

Take your research to the next level!

Publication Opportunity
Potentially earn a place in our coveted Hall of Fame.

Centre of Excellence
Join the esteemed Centre of Excellence.

Networking and Learning
Network with industry leaders, access ongoing learning opportunities.

Hall of Fame
Get your groundbreaking work considered for publication in a prestigious Open Access Journal (worth ₹20,000/USD 1,000).

Achieve excellence and solidify your reputation among the elite!


×

Related Courses

program_img

Python for Data Science

Recent Feedbacks In Other Workshops

Please prepare better material with both foundamentals on the topics and manifacturing processes. More It was not a good idea to just use existing slides from other presentations put together.
Other sources for informations should also be presented for self tuition

GC Faussone : 2025-01-23 at 10:09 pm

great knowledge about topic.


Mr. Pratik Bhagwan Jagtap : 2025-01-22 at 7:29 pm

In general, it seems to me that the professor knows his subject very well and knows how to explain More it well.
CARLOS OSCAR RODRIGUEZ LEAL : 2025-01-20 at 8:07 am

View All Feedbacks

Still have any Query?